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Abstract— Effective insect pest monitoring is a vital 

component of Integrated Pest Management (IPM) strategies. It 

helps to support crop productivity while minimising the need for 

plant protection products. In recent years, many researchers 

have considered the integration of intelligence into such systems 

in the context of the Smart Agriculture research agenda. This 

paper describes the development of a smart pest monitoring 

system, developed in accordance with specific requirements 

associated with the agricultural sector. The proposed system is 

a low-cost smart insect trap, for use in orchards, that detects 

specific insect species that are detrimental to fruit quality. The 

system helps to identify the invasive insect, Brown Marmorated 

Stink Bug (BMSB) or Halyomorpha halys (HH) using a 

Microcontroller Unit-based edge device comprising of an 

Internet of Things enabled, resource-constrained image 

acquisition and processing system. It is used to execute our 

proposed lightweight image analysis algorithm and 

Convolutional Neural Network (CNN) model for insect 

detection and classification, respectively. The prototype device 

is currently deployed in an orchard in Italy. The preliminary 

experimental results show over 70 percent of accuracy in BMSB 

classification on our custom-built dataset, demonstrating the 

proposed system feasibility and effectiveness in monitoring this 

invasive insect species. 

Keywords—Machine Vision, Image processing, Deep 

Learning, Edge AI, Integrated Pest Monitoring, Food Security 

I. INTRODUCTION 

The global food supply is greatly affected by pest insects, 
which contribute to food shortages and reduced quality of fruit 
and vegetables. Pest Insect monitoring is one of the critical 
aspects of an IPM strategy that helps growers to control the 
pest population in the fields and develop strategies to prevent 
and reduce crop damage [1]. At present, trap monitoring 
mainly involves the use of commercial traps to attract insects 
to land on their sticky surface; through the use of pheromones. 
A human operator manually counts the number and variety of 
insects captured on the trap at specific time intervals. This then 
helps the farmers make informed decisions as part of an 
integrated IPM strategy and mitigate the negative effect of the 
pest insects’ presence through an optimal selection of pest 
control techniques. 

The farming community faces the dangers of the rapid 
spread of destructive non-native pest insect species in 
different parts of the world. BMSB is one such insect. It is an 
invasive shield bug native to East Asia (China and Japan) that 
was first seen in Italy in 2012 and just two years later, 

increased damage to fruit crops was observed [2]. It continues 
to spread northwards and the presence of two adult males were 
reported in the UK in 2020 [2]. Therefore, increased 
monitoring approaches, particularly automated monitoring 
approaches are needed to deal with pest insects, in particular 
invasive species such as the BMSB. In this context, a 
collaborative EU research project titled, HALY.ID, is aimed 
to address this challenge through the development of new 
technologies focused on the monitoring of the BMSB insect 
[3].  

Currently, farmers use commercial, pheromone loaded, 
sticky traps in their crops to attract target insect pest species. 
These traps are periodically checked manually for insects to 
establish the type and estimated quantity of the insect present 
in the field or orchard [4]. This is a time consuming task which 
can require a lot of labour and often requires a high level of 
entomological expertise for correct identification that could 
and should be automated. The research community has 
recognised this challenge. To this end, researchers have 
proposed several camera-based monitoring systems. These 
systems take images of a trap and then carry out image 
analysis to detect the presence of pests investigated [5]. These 
systems improve pest monitoring performance, but they have 
limitations as follows. Generally, only one side of the trap is 
monitored whereas commercial insect traps are generally two-
sided [6][7]. The high cost of such systems can be a significant 
drawback in agricultural deployments where scalability is 
critical [5]. Image processing and Machine Learning (ML) 
algorithms are computationally intensive. For this reason, 
some of the proposed methods require either high processing 
power for local computing or cloud-based solutions which 
lead to higher cost and power consumption.  

In this paper, a novel stationary smart pest trap system for 
detecting the BMSB is proposed. It is a low-cost, automated, 
edge device that consists of a camera for taking images from 
the trap, and a servo motor for rotating the trap so that images 
from both sides of the trap can be captured and analysed 
separately. It uses a low-cost and low-power Microcontroller 
Unit (MCU) that performs all data processing on the edge 
device itself, including image processing and ML algorithms. 
The edge device detects and identifies the BMSB in images 
taken of the traps, and only the relevant results are sent to the 
cloud system. In fact, in the image processing phase, just the 
suspected areas that are potentially filled with a BMSB are 
extracted and cropped for classification and transmission. 
Thus, instead of the entire image, some small sub-images are 
utilized for classification and transmission. This significantly 



reduces the bandwidth and storage requirements in what are 
typically resource-constrained systems. This device also uses 
standard double-sided commercial sticky traps that growers 
normally use for manual assessment of insect populations [8]. 
This device was developed as part of the HALY.ID research 
project. Fig. 1 shows the proposed system operational within 
a fruit orchard in the Emilia-Romagna region in Italy. 

This paper is organized as follows. Related works are 
discussed in Section II. In Section III, the proposed method is 
described. Experimental results are shown and discussed in 
Section VI. Section V concludes this research study. 

II. RELATED WORK 

Remote insect pest monitoring is an active research area. 
The research community recognises the potential of 
technology in this application space. For example, in [9] the 
authors proposed a remote greenhouse pest monitoring 
system. Their system is based on Wireless imaging and Sensor 
Nodes (WiSN) which are composed of a Raspberry Pi (RPi) 3 
and a RPi camera that are placed in front of a yellow sticky 
trap. In this configuration, the captured image is transferred to 
a server for analysis via a 4G modem communication link. The 
authors in [10] proposed a remote insect trap monitoring 
approach using four-layer Internet of Things (IoT) to construct 
the remote trap insect monitoring system, as well as Deep 
Learning frameworks for classification. This is a server- or 
cloud-based system with four IoT layers. This approach 
increases the cost and bandwidth requirements. The system 
described is capable of monitoring only single-sided traps. 

Recently, edge-based systems have attracted much 
attention because of their advantages over cloud- or server-

based systems, including lower latency, lower data transfer 
volumes and network traffic, and the ability to deploy in 
remote locations with limited connectivity [11]. Many of the 
recent smart pest monitoring systems found in the literature 
are using a RPi as the main data processing unit, i.e. the 
control and data processing functions are performed by it. In 
[7], the authors proposed an automated light trap to monitor 
moths. This system uses a RPi 4 to execute for computing, an 
Ultra HD web camera, a light ring, and a UV light source. In 
the study described, the trap, a white sheet with a sugar 
coating, is placed in front of the camera. The UV light is used 
to attract insects at night. The camera captures images from 
just one side of the trap. The authors in [6] proposed a vision-
based insect counting and identification system and 
implemented it on a RPi 2 Model B with a camera mounted in 
front of the trap. Their proposed detection algorithm is 
complex as it needs approximately 5 minutes for one cycle of 
insect detection and identification. A similar approach was 
described in [12]. A RPi 3 with an Intel Neural Compute Stick 
was used to detect Codling Moths with the VGG16 Deep 
Neural Network (DNN) model. Both of these systems used a 
RPi single-board computer with a general-purpose 
microprocessor that consumes multiple times the power of an 
MCU-based board. 

In addition, there are a number of studies such as [13] and 
[14] which attempt to improve the detection and recognition 
algorithms and as such are not concerned about the hardware, 
cost and other factors that are important in the considered 
application space, i.e. agricultural settings. 

Current literature shows a limited number of studies that 
focus on edge devices, i.e. computing is carried out near the 

                
Fig. 1. Proposed system at the deployment site in a fruit orchard 

TABLE I 
RELATED WORKS COMPARISON 

Study Title Trap type 
Edge 

Computing 
Image processing unit 

Rustia st al.[9] 
An IoT-based Wireless Imaging and Sensor Node 
System for Remote Greenhouse Pest Monitoring 

Single sided No CPU/GPU (Server) 

Ramalingam et al. 
[10] 

Remote Insects Trap Monitoring System Using 
Deep Learning Framework and IoT 

Single sided No CPU/GPU (Workstation) 

Rustia st al. [13] 
An Online Unsupervised Deep Learning Approach 
for an Automated Pest Insect Monitoring System 

Single sided No CPU/GPU (Server) 

Nam et al. [14] 
Pest detection on Traps using Deep Convolutional 

Neural Networks 
Single sided No CPU/GPU 

Bjerge et al. [7] 
An Automated Light Trap to Monitor Moths 
(Lepidoptera) Using Computer Vision-Based 

Tracking and Deep Learning 
Single sided Yes CPU (RPi) 

Zhong et al. [6] 
A Vision-Based Counting and Recognition System 

for Flying Insects in Intelligent Agriculture 
Single sided Yes CPU (RPi) 

Brunelli et al. [12] 
Energy Neutral Machine Learning Based IoT 

Device for Pest Detection in Precision Agriculture 
Single sided Yes CPU (RPi) 

Proposed system  Double  Sided Yes MCU (OpenMV - STM32) 

 



source of data (e.g. fruit orchards).  Those works that do 
perform the computing function at the edge do not focus on 
low-cost, resource-constrained, MCU-based architectures. 
Furthermore, existing literature reports on works that monitor 
only single-sided traps while double-sided traps are also 
mainly used. Table I shows the comparison of mentioned 
related studies with this work. This paper proposes a novel 
edge device with Edge Artificial Intelligence (AI) that uses a 
low-cost MCU for automated insect monitoring with double-
sided commercial sticky traps.  

III. PROPOSED METHOD 

This work is focused on the development of a stationary 
edge device, also referred to as an end-device or sensor unit. 
The edge device is a low-cost, low-power, MCU-based system 
that incorporates a low-cost camera. It is capable of taking 
images and processing them. The system can be IoT enabled 
so that the output could also be sent to the cloud via a 
telecommunications link; to provide data for the growers’ IPM 
strategy. The proposed general system block diagram is 
shown in Fig. 2. 

In order to meet the requirement of being able to 
automatically identify and count the insect pest of interest, i.e. 
the BMSB, the proposed device should be integrated with a 
standard commercially available insect trap that the growers 
normally use in manual monitoring of their orchards. The 
proposed system must meet certain requirements to be 
attractive to users in the agricultural sector, such as low cost, 
low power consumption, and effectiveness at detecting the 
target insects [5].  

To this end, an IoT sensor system that incorporates both a 
trap and a camera was developed. The camera can take images 
of both sides of the trap at regular time intervals using a servo 
mechanism. The MCU can process the images to detect and 
identify the insects. The proposed system details are 
elaborated in the following sub-sections. 

A. Hardware platform 

One of the main factors that drive many of the system 
requirements for the final prototype is the camera 
specification. The balance between camera resolution and 
energy consumption of the overall system (often battery 
powered for remote deployment) should be considered. 
Similarly, the MCU must be powerful enough to process the 
images but not too powerful so as to avoid unnecessarily 
increasing the cost.  

Based on the identified requirements, the OpenMV Cam 
STM32H7 Plus module was selected for this study [15]. 

OpenMV is an MCU-based image acquisition board with an 
STM32H743II ARM Cortex M7 processor with 32 MB of 
SDRAM, 1MB of SRAM, 32 MB of external flash and 2 MB 
of internal flash running at 480 MHz. This is a small, 
inexpensive, and low-power system that incorporates an 
OV5640 imaging sensor that can acquire a 5MP resolution 
image. In the system developed, images of 2MP resolution are 
used to achieve lower power consumption while still being 
able to capture and identify the smallest features of the BMSB, 
such as antennas and legs. 

B. System Design 

The device must not have an adverse impact on the trap’s 
fundamental requirement, its attractiveness to insects. The trap 
attractiveness to insects could be reduced if the device is not 
designed appropriately. For example, the effectiveness of the 
trap can be impaired based on its positioning or the amount of 
light it is exposed to and this needs to be one of the system-
level design parameters considered and discussed below [5]. 

1) Illumination 

Vision sensors are designed to capture optical data that 
their sensor arrays are exposed to. Illumination plays a critical 
role in these sensors’ effectiveness. The less controlled the 
environment is, the more difficult it is to extract the desired 
information from the images. One way to control the 
environment is to introduce artificial illumination to the scene, 
thus, introducing a level of control over the environment in 
which the vision sensors operate. This approach is also widely 
used in machine vision applications with an associated power 
drain which needs to be considered [16][17]. The impact of 
illumination is clearly visible in Fig. 3. As is clear from this 
figure, illumination has a significant impact on the captured 
image quality and can directly affect image processing and 
deep learning performance. This allows for image acquisition 
at night, i.e. minimising other sources of illumination. 

2) Servo Motor Integration 

Commercial insect traps are generally double-sided, i.e. 
insects are captured on both sides. This can pose a significant 
challenge for a camera-based sensor. Firstly, both sides of the 
trap must be captured and analysed. Secondly, the camera 
must not be occluding either of the trap’s two sides or else its 
effectiveness could be adversely affected.  

The above problems can be solved by introducing a novel 
approach that utilises a low-cost servo motor. The servo motor 
can hold and rotate the trap. When the camera is inactive, the 
trap’s surface is parallel to the camera’s optical axis, thus 
avoiding occlusions, as shown in Fig. 1. When the pictures are 
to be captured, the servo motor rotates the trap so that the 
camera can capture images from both sides of the trap. 

 

Fig. 3. Illumination impact on image quality; Left: darkest conditions, 

Right: brightest conditions (In Lab) 

 

Fig. 2. General system block diagram 



C. Image Processing System Algorithm 

The proposed system algorithm is shown in Fig. 4. This 
algorithm first attempts to extract the Region of Interest (ROI) 
or multiple ROIs from the captured image of the trap. It then 
runs a CNN for insect classification. The area of the ROI is 
such that the insect of interest almost entirely fills its area. In 
this way, only small portions of captured images (ROIs with 
suspected BMSBs) are used for further processing and 
transferring, which reduces system requirements significantly. 
The steps of the proposed algorithm are also shown in Fig. 5 
which depicts the image processing pipeline using an example 
input image; from the raw input image to the end result.  

It must be noted that the algorithm under development 
must be as “light” as possible so as to run on the edge device 
which is resource-constrained in terms of processing power, 
memory, and energy. In this context, in the first phase (pre-
processing), two simple image processing techniques are used 
to prepare the raw input image (see Fig. 4). These techniques 
are as follows:  

1- Gaussian Blur: The Gaussian blur/smoothing filter 
with the 3x3 kernel is applied to the input image to reduce the 
high-frequency noise component and details [18]. 

2- Since there is a strong difference in colour and 
intensity between black (insects) and the white background 
colour (trap), histogram-based thresholding is utilized to 
divide the image into two classes, i.e. background and 
foreground. To this end, Otsu’s method [19] is used to find the 
optimal threshold value.  

Then, a simple blob detector (available in OpenMV 
libraries [20]) is utilized to detect and extract possible ROIs 
from the image. The blob detector finds a blob based on two 
main parameters including Pixel Area and Circularity. Pixel 
Area is set based on the minimum and maximum size of the 
studied insect which is approximately 12-17 mm in length 

[21] and Circularity is adjusted so as to approximate the 
insect’s shape to an Elliptical Shape. 

Finally, just the extracted ROIs are passed to a lightweight 
deep learning model for insect classification. In this phase, the 
extracted small images are fed to the deep learning model to 
label with the input ROI with either a Yes or No depending on 
whether there is a BMSB present in the extracted image or not. 
As mentioned before, the deep learning model should be as 
small as possible so that it can fit in the MCU’s memory. For 
this reason, parameter quantisation was performed on the 
model which converts floating-point numbers to other data 
types. In this study, all the weights and biases were converted 
to 8-bit integers [-128,127] instead of float32 which 
significantly reduces memory and computing requirements. 
The (int8) quantised CNN model is proposed with the model 
size of just 57kB to show the feasibility of such systems.  

The model architecture is shown in Fig. 6. This is a CNN-
based model comprising two convolutional layers with 32 and 
16 channels and a kernel size of 3x3. Each convolutional layer 
is followed by a max-pooling layer. In the final part, there is a 
fully-connected layer connected to the output layer (softmax). 
This model totally has 51,730 parameters and the TensorFlow 
framework was used to design, train and quantise the model. 

IV. EXPERIMENTAL RESULTS 

In this section, the performance of the proposed prototype is 
evaluated based on preliminary results. Note, that the 
proposed algorithm was implemented on the OpenMV MCU 

 
Fig. 6. CNN Model Architecture 

 
Fig. 5. System pipeline: from raw input image to ROI classification 

 

 
Fig. 4. System algorithm diagram 



platform, and all the computation and analysis were carried 
out on this board. Moreover, it must be noted that this task was 
carried out before the field deployment. Thus, we did not have 
access to real-world images of the BMSB in the orchards. For 
this reason, the initial dataset was manually created in 
laboratory conditions using dead (deep-frozen) BMSB 
specimens that had been collected in the field by our project 
collaborators. The specimens were manually glued to the trap 
instead, as shown in Fig. 5, simulating a deployment capture 
scenario. 

As mentioned in the previous section, in the first phase, the 
proposed system finds and extracts ROIs from the whole input 
image. Our laboratory experiments (see Fig. 7) showed that 
the proposed method for ROI extraction was sufficient for 
successfully detecting all desired blobs based on Pixel Area 
and Circularity parameters. 

Regarding the deep learning part, Adam and Binary Cross-
entropy are chosen as the optimizer and loss function, 
respectively. The kernel size of 3x3, same padding with strides 
1 are set for 2-D convolutional layers, and their activation 

functions are Rectified Linear Unit (ReLU). The output layer 
activation function is Softmax and a dropout layer with the 
rate of 0.25 is used to tackle the overfitting during the training 
phase.Fig.8 shows the model accuracy and loss curves. Based 
on this figure, model accuracy becomes steady at around 97% 
after 15 epochs. 

The model performance is reported in Table II, i.e. the binary 
classification. The model with parameters in float32 data type 
achieved 96.7% accuracy and over 97 % for recall, precision 
and F-score with the size of 210 kB. On the other hand, the 
quantised model with parameters in the int8 data type 
achieved lower accuracy, i.e. 88.3 %. However, the model size 
was significantly reduced; by a factor of approximately 3.7, 
and its size in memory was reduced to 57 kB. 

The quantised model, i.e. that with parameters in the int8 
data type, was embedded in the MCU’s firmware. The 
proposed prototype system was (and still is – September 2022) 
deployed in an orchard in the Emilia-Romagna region in Italy 
during the summer months. Table III reports the model 
classification performance from this deployment. The data 
collection was carried out over a period of two months during 
which the BMSB was present in the orchard. Table III shows 
that the classification accuracy in real-world field deployment 
was lower as compared to the corresponding experiments in 
the lab, i.e. shown in Table II. This result was expected as the 
images acquired in the orchard were contaminated noise and 

 

Fig. 7. a) Original input image from artificial insects, b) Image pre-

processing, c) Blob detection on input image in greyscale 
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TABLE II 

PROPOSED CNN MODEL LABORATORY RESULTS 

 
Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F-score 

(%) 

Model 
Size 
(kB) 

Float32 96.7 97.6 97.6 97.6 210 

Int8 88.3 95.1 88.6 91.8 57 

TABLE III 

PROPOSED CNN MODEL FIELD DEPLOYMENT RESULTS 

 
Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F-score 

(%) 

Int8 70.1 77.2 81.6 79.4 

 

 

 
Fig. 8. a) Training and validation Accuracy, b) Training and 

validation Loss 
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Fig. 9. Some results of deployed prototype 

P = 1, T = 1 P = 1, T = 0 P = 1, T = 1

P = 0, T = 0 P = 0, T = 0 P = 0, T = 0

P = 1, T = 0 P = 1, T = 1 P = 1, T = 1



by-catch (random non-BMSB insects on the trap) to a greater 
extent. In this regard, some of the classified images captured 
at the deployment site in Italy are shown in Fig. 9. There are 
some false positives or negatives in the field deployment 
results. For example, regarding the second image in the first 
row of Fig. 9, it was predicted as BMSB while it is not. This 
is because it has the same shape as the BMSB but it has a 
different colour and it is not in the used dataset for training. 
Also, a similar result occurred when BMSB lands unevenly on 
the trap. Hence, further improvement of the deep learning 
model and training it with images captured in real-world 
conditions can further increase the accuracy. 

These results show the output of the early stage, edge- 
compatible, image processing algorithms. The proposed 
method has shown promising results. It demonstrates the 
potential that this system has in the considered application 
space, i.e. automated pest insect monitoring as part of an IPM 
strategy. 

V.  CONCLUSIONS AND FUTURE WORK 

In this study, a novel prototype system for automated 
insect pest monitoring with a commercial trap was proposed. 
It is a low-cost edge device with Edge AI for detecting and 
identifying insects of interest, in this case the BMSB. An 
OpenMV Cam H7 Plus was selected for the proof-of-concept 
prototype in this study to satisfy the balance between cost, 
energy consumption and processing power. As this is a 
resource constrained MCU based board, a lightweight image 
processing algorithm is proposed to extract only ROIs with 
candidate blobs (suspected BMSB) for further processing 
instead of processing whole images, thus reducing system 
requirements. Then the extracted ROIs are fed to a lightweight 
CNN model for classification and BMSB inference. The 
proposed system was validated in field deployment in an 
orchard in Italy during the summer months and an evaluation 
of performance is underway. The preliminary results show 
promising results with BMSB classification accuracy of over 
70 percent. It is an ongoing study. The accuracy of the Edge 
AI is expected to increase once the CNN updated model is 
retrained with a dataset containing images from real-world 
field deployment conditions. Also, it must be noted that as an 
edge-based system, the power consumption aspect is the next 
stage of this study, even though it is expected the energy 
consumption of our MCU-based system to be multiple times 
lower than that of the RPi-based solutions.  
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