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Abstract

In an Internet of Things (IoT) environment such as the wireless sensor network the nodes
are usually powered by batteries. When the nodes are deployed in a harsh environment the
battery replacement may be a hard task or the cost of the maintenance may be very high.
In this paper, we explore the possibility of recharging the nodes using drones equipped
with chargers that can wirelessly transfer energy to the nodes. We examine the problem
of minimizing the number of drone positions by adjusting the drones’ altitude since the
harvesting power is related to the altitude the drones fly. Indeed, the higher the altitude,
the larger the observed area but the lower the harvesting power. The aim is to find the
minimum possible drone locations such that all the nodes are charged before the drones
run out of energy. We show that this problem can be reduced to the set-cover problem
which is NP-Complete. We propose a time-efficient heuristic which can run on devices with
low processing capabilities. We, also, solve the problem using Integer Linear Programming
(ILP) capable of providing the optimal solution. The evaluation using a set of Monte Carlo
simulations shows significant performance gains in terms of execution time compared to the
ILP solution while keeping the number of positions close to the optimal.

1 Introduction

The IoT comprises some hundreds of interconnected wireless devices that are capable of sensing,
controlling and communicating in order to give us a better understanding of our world. These tiny
wireless nodes are often deployed in inaccessible places or in places where there is no permanent
power supply. The use of batteries tackles the problem of energy demand, however, their batteries
can only last for a few months or years depending on the application. The battery replacement
may be a task which incurs a high cost and considerable amount of time especially in sparse
large-scale deployments.

To alleviate the energy demands of the nodes, prolong the network lifetime, or in some cases
provide energy autonomy, the use of energy harvesting techniques has been recently proposed [1].
Unlike other power harvesting methods (solar, vibration etc.), RF-power harvesting by injecting
a constant energy rate, can recharge multiple devices at the same time, and can be used whenever
and wherever there are energy needs. RF-power harvesting can be used to power low duty cycle
IoT devices such as RFIDs, sensors, and actuators.

RF-power harvesting is divided in two categories; in the first category, the nodes take ad-
vantage of the ambient RF signals transmitted by nearby primary devices such as TV towers,
cell network antennas, or nearby WiFi’s. Ambient harvesting does not require any additional
equipment other than the harvesting module, however, the amount of power to be harvested
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may be extremely low and it varies over time [2]. In the second category, dedicated chargers
are used to continuously transmit energy and recharge the nodes. Using dedicated chargers,
the received power at the nodes is significantly higher compared to the ambient harvesting but
several chargers with high energy reserves needs to be placed across the network.

In this paper, we use drones that act as chargers which periodically fly over the network
and fully recharge the nodes. The beam of the chargers is directional towards the ground.
Thus, as depicted by Figure 1, the drones can fly at different altitudes to optimize the charging
procedure. The higher a node flies, the less the received power, since the signal attenuates with
the distance and the harvesting module becomes less efficient. On the other hand, the nodes
may have different energy demands depending on their position and their role in the network.
For example, nodes close to the sink need to stay active for a longer time to forward data from
their neighbors. Thus, they consume much more energy compared to other nodes and require
longer recharge times or shorter distances from the charging drones.

Figure 1: Two drone positions with different altitude charging a number of nodes.

Although the problem of node energy replenishment using vehicles and wireless power transfer
has been already examined in the literature, this is the first work which involves drones that can
fly at different altitudes to recharge multiple node at a time. Moreover, given the drone battery
capacity, the positions of the nodes, their consumption, and other network parameters we present
equations to describe whether wireless power transfer using drones is feasible. We introduce the
Optimal Drone Positioning (ODP) problem to find optimal drone positions and minimize the
nodes total energy consumption. We show that it can be reduced to the set-cover problem which
is NP-Complete. To solve the ODP problem we propose an efficient heuristic with low complexity
as well as an Integer Linear Programming approach which evaluates a larger range of eventual
drone positions. Simulation results using realistic node and charging parameters confirm the
feasibility of using drones in the energy replenishment process. Moreover, they show a lower
computation cost of the heuristic approach while it generates solutions close to the optimal in
terms of number of positions.

The rest of the paper is organized as follows. Section 2 is dedicated to the related work. In
Section 3 we describe the energy consumption and harvesting models and we introduce the ODP
problems. Section 4 describes the proposed solutions and Section 5 presents the comparison and
evaluation results. Finally, Section 6 concludes the paper and presents directions for future work.
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2 Related work

In this section, we briefly cite only works related to the energy replenishment problem with
dedicated chargers for IoT devices with limited power resources. The reader can refer to [3] and
[4] for other similar optimization problems with drones and sensors.

Several are related to the problem of finding the optimal number of chargers. Zhang et al.
[5] examined the problem of maximizing an objective function subject to a power budget. They
present approximation algorithms as well as greedy heuristics to find close to the optimal charger
positions and their corresponding power transmission levels. The simulation results outperform
a random placement strategy. The solution though is limited to 2-dimensional networks. A
similar problem is studied by Dai et al. [6]. In this case, a charger positioning problem taking
into account the electromagnetic radiation levels is considered. The authors propose a solution
which alternates the transmission power of the chargers. The solution guarantees that the elec-
tromagnetic radiation levels are safe for every location on the plane. Optimal charger placement
problems are also explored in [7] and [8]. The first one presents localized and centralized solu-
tions to place mobile chargers in between a cluster of nodes. The chargers are used to extend
the lifespan of as many nodes as possible. In the second work, the optimal number of chargers
problem for battery-free nodes is examined. A fast heuristic algorithm is proposed and is com-
pared to the optimal solution. These two last works consider only 2-dimensional networks and
omni-directional energy emission.

Another set of studies deals with the problem of network traversing and node energy replen-
ishment by mobile agents. Traversal strategy problems to efficiently recharge nodes using one
or more vehicles are examined in [9]. The objective in this kind of problems is how to schedule
and, sometimes, take decisions locally in order to periodically recharge a set of nodes. How-
ever, additional objectives may be defined, such as the minimization of the recharge operation
time [10] and the data gathering [11]. These problems are often formulated as dynamic vehicle
routing problems and can be solved to optimality by linear programming solutions. Distributed
solutions are, also, proposed [12]. Similar routing vehicle problems and solutions combined with
node recharging are also presented in [13] and [14]. The network may also involve mobile nodes
[15]. This kind of problems differ from the one examined in the current paper since they are
limited to the 2-dimensional space. Apparently, some of the approaches can be revised to in-
volve vehicles in 3-dimensional space as well. These approaches can be combined with our drone
altitude adjustment concept to compute minimum vehicle and energy efficient schedules.

Finally, a few studies involve drones in node recharging process although the objectives and
the technology of the wireless power transfer are different. Detweiler et al. [16] present a
proof-of-concept device to recharge nodes using magnetic resonant power transfer. This is a
different technology which exhibits a high power transfer but it requires very short distances
(i.e., up to some centimeters) between the transmitter and the receiver as well as accurate coil
alignment between the two sides. Basha et al. [17] extend the previous work by considering a
mobile sink scheme to further improve the network lifetime. Finally, Najeeb et el. [18] present a
localized method using the same recharge technology. They consider a problem where the drone
can recharge nodes in one-by-one manner without having a complete knowledge of the network
parameters. As a consequence, the drone takes local decisions to visit the next node.
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3 Problem description

3.1 Node consumption model

The energy a node consumes depends on the amount of time it remains active. We consider
a modern node configuration where the nodes are parts of an IEEE 802.15.4-TSCH network
[19] operating at 2.4GHz. IEEE 802.15.4-TSCH was chosen as the MAC layer protocol since
it exhibits significant energy savings combined with a 99% packet delivery ratio compared to
traditional CSMA MAC layers [20]. The routes towards the sink are constructed using the RPL
protocol [21]. Each node chooses a preferred parent to forward its data according to the RPL
functionality. In IEEE 802.15.4-TSCH, the time is divided in slotframes and each slotframe
has 101 timeslots of 10ms each. During these 10ms a node can transmit (or receive) a packet
and receive (or transmit) an acknowledgment. If a node does not transmit or receive during
a timeslot, it remains in sleep mode, saving a significant amount of energy. Depending on the
application, a node may send zero to multiple packets per slotframe.

In this paper, we consider networks consisting of N nodes. Each node i generates qi packets
per τ seconds. Thus, the total energy cost of a node in τ , Cτi , is computed as follows:

Cτi = Qi10−2Ptx + (Qi − qi)10−2Prx+

+ (τ − (2Qi − qi)10−2)Pslp,
(1)

where Qi =
∑Ki

j=1 +qi. Ki is the number of predecessor nodes of i. Ptx, Prx, and Pslp are the
transmission, reception and sleep mode power consumptions, respectively.

We must note here that no exact knowledge of the node consumption is required. Since in
IEEE 802.15.4-TSCH the nodes wake up at strict time intervals, the number of received packets
at the sink can be used to approximate the energy consumption.

3.2 Energy harvesting model

We adopt an energy harvesting model where the harvesting energy depends on the distance
between the node and the charger, the propagation model, the efficiency of the harvesting module,
and the charging time. More specifically, the energy harvested by a node i in t time while it is
in the harvesting range of a charger j is given by (2):

Ht
i =

∫ t

0

P dijrx f
dij tdt, (2)

where P
dij
rx is the received power and fdij is the efficiency of the harvesting antenna at distance

dij
1. The received power at distance d is given by the following propagation model [22]:

P drx = P0
e2σG

(dρ )2b
, (3)

where e2σG has a log-normal distribution with a shadowing coefficient σ (G ∼ N(0, 1)). The term
1/(dρ )2b accounts for the far-field path loss with distance d, where the amplitude loss exponent b
is environment-dependent. P0 is the received power at reference distance ρ.

We, also, consider energy conversion losses as a function of the harvesting energy lti = λHt
i ,

where λ is the power loss factor (0 < λ < 1).

1we use efficiency values provided by the manufacturer Powercast (http://www.powercastco.com)
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3.3 Recharge feasibility

In order to achieve energy replenishment using drones, a number of conditions need to be satisfied
taking into account the node energy consumption and harvesting models.

First, the final amount of energy after the losses in τ time units must be higher than the
node consumption for the same period of time as it is described by Eq. (4):

(1− λ)Hτ
i − Cτi > 0. (4)

Second, the recharge time of the nodes cannot exceed the maximum flying time of a drone.
If we assume that the recharge process starts after Rτ amount of time where R ∈ Z∗ and M is
the maximum flying time, the total time needed to replenish the energy consumed during this
period must not exceed M :

RCτi
(1− λ)Hτ

i − Cτi
τ ≤M. (5)

From Eq. (2), (3), and (5) we can compute the maximum distance, dmax, a drone can be
found away from i in order to recharge it. dmax is given by Eq. (6).

dmax = 2b

√
(1− λ)P0e2σGfdmaxτM

τRCiτ +MCiτ
. (6)

Figure 2 illustrates dmax using realistic drone and charging parameters as they are given in
Section 5.1. Different packet generation intervals and maintenance times are evaluated consid-
ering 1 packet per τ minutes for a leaf node. We denote with θ the angle of the beam. The
results show that dmax remains higher than 4 meters even for dense packet generations and
sparse maintenance periods. However, if dmax = 4m the radius of the covering disk cannot
exceed 4 tan θ

2 = 6.93m limiting the feasibility of recharging multiple nodes with a single drone
to dense networks only.
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Figure 2: Maximum drone distance dmax for different packet intervals τ and maintenance starting
times Rτ .

Moreover, there is a maximum distance beyond which no power conversion is possible. This
distance may vary according to the amount of received power and the attenuation model. As a
consequence, there is a maximum drone altitude denoted with hmax. We, also, set a lower drone
altitude limit, hmin, for obstacles avoidance purposes.

A single drone may recharge multiple nodes at the same time. It can achieve this by adjusting
its altitude h as it is depicted in Figure 3. It is assumed that the projection of the beam to the
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Figure 3: A drone with altitude h and covering radius r.

XY plane is a disk with radius r. Eq. (4) and (5) must be satisfied for each node in the disk,
otherwise, the drone needs to lower its altitude with the cost of covering a smaller number of
nodes.

3.4 The Optimal Drone Positioning problem

Given a set of nodes S = {s1, s2, ..., sN}, we define the ODP problem as a minimization problem
of the number of positions D so that the conditions described in Section 3.3 are satisfied. We
omit the formal formulation of the problem due to the limited size of this paper.

Next, we will show that the ODP problem can be transformed to a set-cover problem which
is NP-Complete. Let us assume the example of Figure 3. This set of four nodes can be covered
by 24 − 1 different ways using one to four drones. Excluding the subsets that do not satisfy the
conditions of Section 3.3, the objective is transformed in finding the minimum number of subsets
so that all the nodes are included in these subsets. This is actually the objective of the set-cover
problem.

4 The proposed solutions

4.1 Set-cover solution

As it is shown in the previous section, the ODP problem can be easily solved once it is transformed
to a set-cover problem. However, to do so, a high number of subsets (node combinations) needs
to be generated and tested whether they fulfill the recharge requirements. The total computation
cost of processing all the subsets may be extremely high since 2N − 1 subsets need to be checked
and for each subset two procedures with considerable cost take place. First, the checks described
by Eq. (4) and (5) require O(n) computations, where n is the cardinality of the subset. Moreover,
if the subset has three or more elements a Smallest Enclosing Circle (SEC) computation is
required to determine the altitude of the drone. A SEC exhibits an O(n) cost [23].

Next, we describe an efficient algorithm to decrease the number of generated subsets and,
thus, the computation cost. The proposed algorithm does not solve the ODP problem but it is
used as an efficient way to generate and test all the possible drone position combinations that
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Algorithm 1: ODP to set-cover transformation

sets = ∅;
foreach i ∈ [1..N ] do

find max distance dmax using Eq. (6);
reachable = {i};
foreach j ∈ [1..N ] do

if |ij| ≤ rmax then
reachable := reachable ∪ {j};

foreach subset combination sub from reachable do
skip sub if cardinality higher than 3 or if i /∈ sub;
compute drone position x, y, h using SEC;
if h < hmin then h = hmin;
check = 1;
if h > hmax then check = 0 ;
foreach j ∈ sub do

if j does not satisfy Eq. (4), (5) then
check = 0;

if check == 1 then
foreach j ∈ reachable do

if distance of j to (x, y) ≤ h tan θ
2 then

if j satisfies Eq. (4), (5) then
sub := sub ∪ {j};

sets := sets ∪ sub;

return sets;

will be later used as input for the set-cover solution. The algorithm (see Algorithm 1) takes
advantage of the following SEC properties; (a) the minimum enclosing circle can be determined
by at most three points which lie on the boundary of the circle and (b) if it is determined by only
two points, then the line segment joining those two points must be a diameter of the SEC. This
means that only the subsets with one, two or three elements need to be checked. The computed
circle (i.e., disk) will also contain any other nodes covered by the examined drone.

The algorithm picks one node i per iteration from the N available nodes and it checks whether
any other node is found in distance rmax = dmax sin(θ/2) from it as it is described by Eq. (6).
All these nodes are placed in set reachable. They are used to generate a set of subsets, each of
them corresponding to potential drone positions capable of recharging i and other neighboring
nodes. Each subset is checked whether it satisfies the criteria defined by Eq. (4) and (5) once
the position of the drone is computed using a SEC algorithm. If yes, other nodes located in
the computed smallest enclosing disk are also checked. If they satisfy the recharge criteria, they
are also added in the examined subset. The algorithm terminates by returning the collection of
subsets.

Algorithm 1 requires at most N(
(
N
1

)
+
(
N
2

)
+
(
N
3

)
) computations. The worst case appears

when all N nodes are used to generate the subsets of reachable.
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Algorithm 2: Drone Positioning Heuristic

covered = ∅;
POS = ∅;
sort nodes in descending consumption order and store them in sorted;
foreach i ∈ sorted do

if s ∈ covered then skip i;
covered := covered ∪ {i};
ctemp := ctemp ∪ {i};
pos = (0, 0, 0);
search neighborhood = 1;
while search neighborhood == 1 do

select a node s /∈ covered as the shortest to i node;
if defined s then

ctemp := ctemp ∪ {s};
compute drone position x, y, h using the nodes in ctemp;
check = 1;
foreach j ∈ ctemp do

if j does not satisfy Eq. (4), (5) then
check = 0;

if check == 1 then
pos = (x, y, h);
covered := covered ∪ {s};

else
search neighborhood = 0;

POS := POS ∪ pos;
return POS;

4.2 Drone positioning heuristic

The Drone Positioning Heuristic (DPH) (see Algorithm 2) is a fast alternative solution for the
ODP problem. DPH examines only a subset of the possible drone positions starting from the
nodes with higher consumption.

In its first step, DPH ranks the nodes in descending energy consumption order. It then
successively picks the first ranking node and it tries to expand the recharge range covering more
nodes with a single drone. To achieve this, it finds the closest neighbor and checks if conditions
(4) and (5) are met. It abandons if the next shortest neighbor does not pass the recharge criteria
or if no further expansion is possible. In this case, DPH stores the current drone position and
initiates a new drone position pos(x,y,z). Already covered nodes are excluded from future
selections. The algorithm terminates by returning the set of positions POS.

DPH exhibits a low complexity since at the worst case it requires N2 computations.
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5 Evaluation & discussion of the results

5.1 Setup

We assume a scenario with a fixed size square terrain of 50 meters side and a variable number of
nodes randomly and uniformly scattered on the terrain. We compare DPH’s performance to the
optimal solution derived by solving the ODP problem as it is transformed by Algorithm 1. To
do so, we use an ILP set-cover solution that uses the GLPK2 library. We measure the minimum
number of positions as well as the execution time of the two approaches. Due to the presence
of random values, we generate 25 instances per scenario and we run each instance 10 times; the
average results are presented. The 95% confidence intervals are, also, displayed.

Regarding the node, charging and drone characteristics, we consider the following values:
Ptx = 24mA, Prx = 20mA, Pslp = 1.45µA, τ = 15 minutes, q ∈ [1..5] every τ minutes, R = 12,
M = 30 minutes, hmin = 3m, hmax = 10m, σ = 1, P0 = 8mW , θ = 120 degrees, ρ = 1m,
λ = 0.4 and b = 1. The transmission, reception and sleep mode power consumptions refer to
Zolertia RE-Mote nodes3. Regarding the charger and the harvesting efficiency we used the values
provided by the Powercast corporation for the P2110B harvesting receiver and a 3W effective
isotropic radiated power charger operating at 915MHz.The algorithms were developed using the
Perl programming language whereas the experiments were carried out on an Intel i7 2.7GHz
CPU with 8GB RAM running Linux. No parallel processing was performed.

5.2 Results

Figure 4 depicts the number of positions for different node populations. We can observe that
the number of positions increases almost linearly with the number of nodes. Additionally, DPH
produces a slightly higher number of locations but close to the optimal solution. Indeed, the
difference between the two approaches varies between 2 and 15%.
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Figure 4: Number of positions for different node populations.

An example with the solutions of the two approaches for a scenario with 20 nodes is depicted
in Figure 5. The small circles denote the nodes, the big circles are the projections of the drone
positions onto the XY axes, and the lines represent the routes from each node to the sink (as they
are computed by the RPL protocol using the preferred parent). The sink is the only uncovered
node in the network. Both DPH and LP produce the same number of positions. However, LP

2https://www.gnu.org/software/glpk/
3https://github.com/Zolertia/Resources/raw/master/RE-Mote/Hardware/Revision%20B/Datasheets/ZOL-

RM0x-B%20-%20RE-Mote%20revision%20B%20Datasheet%20v.1.0.0.pdf
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sometimes double covers some nodes increasing the flying time. This happens because the only
objective of the LP solver is the minimization of the number of positions producing sometimes
overlapping drone projections.
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Figure 5: Solutions of the two approaches for a scenario with 20 nodes.

Figure 6 depicts the execution time of the two approaches. DPH requires up to 0.01 seconds for
all the examined scenarios while the computation cost of the LP approach increases exponentially
with the number of nodes. This makes DPH’s execution feasible on devices with low power
capabilities such as ARM-based drones. Indeed, we tested DPH on a Raspberry Pi Zero with
1GHz ARM CPU and the results show that the execution time does not exceed half of a second
even for scenarios with many nodes (see Figure 7).
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Figure 6: Execution time of the two approaches.
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Figure 7: Execution time of DPH running on a Raspberry Pi Zero.

6 Conclusion & Future work

In this paper we studied the problem of computing the optimal drone positions needed to recharge
an IoT network consisting of RF-power harvesting nodes. We showed that the problem can be
transformed to the set-cover problem which is NP-Complete. We proposed an efficient algorithm
for this purpose. We, also, proposed a lower complexity heuristic algorithm capable of running
on hardware with limited processing power if there is such a need. Simulation results showed
that the heuristic solution is faster while it performs close to the optimal. In the future we
intend to evaluate the proposed solution using a real experimental environment and assess the
impact of a noisy environment as well as of the presence of obstacles. Finally, we are interested in
computing optimal drone tours combined with the multiple drone altitude concept and optimize
both network lifetime and the number of vehicles.
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