
Energy-efficient Clock-Synchronization in IoT Using
Reinforcement Learning

Damir Assylbek, Aizhuldyz Nadirkhanova, Dimitrios Zorbas
Nazarbayev University, School of Engineering & Digital Sciences, Astana, Kazakhstan

Authors’ email: {firstname.lastname}@nu.edu.kz

Abstract—Clock synchronization in the Internet of Things (IoT)
is a critical aspect of ensuring reliable and energy-efficient com-
munications among devices within a network. In this paper, we
propose an entirely autonomous and lightweight Reinforcement
Learning (RL) approach to learn the periodicity of synchronized
beacon transmissions between a transmitter and several receivers,
while maximizing the sleep time between successive beacons to
conserve energy. To do so, the proposed approach exploits a set
of states, actions, and rewards so that each device adapts the
radio-on time accordingly. The approach runs on each individual
receiver without any prior knowledge of the network status. It
is implemented and tested on off-the-shelf ESP32 IoT devices
which are known to exhibit high clock drift rates. The testbed
results demonstrate the ability of the approach to autonomously
synchronize the receivers while achieving a similar performance in
terms of packet (beacon) reception ratio but 45% better energy
efficiency compared to a traditional approach followed in the
literature for one-to-many type of synchronization. Apart from
the improved energy consumption, the power characterization of
the system shows that the RL approach requires negligible CPU
resources.

Index Terms—Machine Learning, Reinforcement Learning, In-
ternet of Things, Synchronization, Wireless networks

I. INTRODUCTION

Clock synchronization in IoT networks is a critical aspect
that ensures efficient and reliable communication among net-
worked devices. In IoT and in wireless networks in general,
accurate clock synchronization is essential for various appli-
cations and aspects of the network, such as data coordina-
tion, channel access, and energy consumption [1]. However,
achieving precise clock synchronization is challenging due to
background process scheduling and the inherent variability in
wireless communications, including signal propagation, path-
loss, and interference [2].

There are many applications that require one-to-many type
of synchronization between devices. In this type of commu-
nication, a master device (e.g., a gateway) broadcasts data to
multiple end-devices (EDs) in order to synchronize their clock
and perform a number of operations without collisions. Typical
examples of such an application are the over-the-air firmware
updates [3] and time-slotted protocols [4]. Since the EDs need
to periodically wake up to receive data, guard times are used
between successive beacon receptions in order to tolerate slight
clock drifts. However, several issues may arise. Firstly, the
transmissions’ periodicity must be known to the EDs before-
hand. If this changes, the EDs may need to be reprogrammed
or updated one by one. Secondly, each ED has its own clock
drift due to differences in the crystal oscillator, aging, battery

voltage, and operating system scheduling. Achieving precise
clock synchronization requires manual adjustment of guard
times to each individual ED. Otherwise, long guard times need
to be used to compensate for high clock drifts among all
devices. Lastly, even if the guard time is perfectly adjusted per
ED, clock drift is affected by environmental conditions such
as ambient temperature, meaning certain devices may exhibit
higher clock drifts. Handling these cases manually may result
in significant manpower costs.

To tackle these issues, we propose a RL approach for clock-
sleep adjustments on individual devices without prior knowl-
edge of beacon transmission periodicity. This solution uses the
SARSA algorithm, defining states, actions, and rewards for full
autonomy in clock synchronization and energy savings. Tested
on ESP32 devices with IEEE802.11 transceivers, our approach
outperformed a deterministic method with fixed guard times.
Results show quick adaptation to changes without compro-
mising packet reception ratio. Our approach achieves similar
beacon reception success rate, but testing on a power meter
revealed average energy savings of 45% per round.

Overall, the contributions of this research are summarized as
follows: (a) An autonomous RL approach to learn the beacon
periodicity but also adapt to beacon periodicity changes is
presented; (b) the proposed approach is capable of adjusting
the guard and sleep time of each individual device, minimizing
the energy losses; and (c) an open-source C++ implementation
for off-the-shelf ESP32 devices is provided.

The rest of the paper is structured as follows. Section II
surveys the related work in the area of time synchronization
in IoT networks. Section III presents the proposed solution for
the one-to-many synchronization scheme. The evaluation of the
proposed solution using real field experiments is presented in
Section IV. Finally, Section V draws the conclusions and ideas
for future work.

II. RELATED RESEARCH

Learning approaches in IoT for clock synchronization blend
conventional and machine learning (ML) techniques to auto-
mate tasks and address challenges. Traditional solutions fo-
cused on synchronizing resource-constrained devices with min-
imal complexity. The Tiny-Sync protocol [5] offers a straight-
forward method by estimating clock drift upon receiving a
packet, provided there’s no sleep interval between beacons.
Slot-based synchronization methods, like 6TiSCH [6], ensure
receivers wake up just in time for transmissions, synchronizing

by the duration the radio was active until beacon receipt. A sim-
ilar strategy is applied in [4] for one-to-many synchronization
by averaging sleep times based on beacon receptions. Magzym
et al. [7] introduce a deep sleep mode post-synchronization,
assuming a known and fixed beacon periodicity and a long
guard time to account for the maximum clock drift.

Fan et al. [8] highlight the limitations of traditional clock-
synchronization methods, such as the Huygens algorithm [9],
which may require complex hardware not always available in
IoT devices. They critique the high communication overhead
and internet dependency of protocols like NTP or the Multi-hop
Precision Time Protocol (M-PTP) [10]. Instead, they propose a
lightweight, probe-based synchronization approach achieving
accuracy within tens of microseconds for devices with low
clock drift.

Similar to this, a method [11] utilizes linear regression to
model clock drift, facilitating mutual device synchronization
with considerable precision. The Flooding Time Synchro-
nization Protocol (FTSP) [12] and the Rate-Adaptive Time
Synchronization (RATS) [13] also employ linear regression to
average timestamps for final clock adjustment and to minimize
the confidence interval for time estimation, respectively. How-
ever, these methods face challenges in multi-device scenarios
due to coordination complexities.

Abakasanga et al. [14] propose an unsupervised deep learn-
ing framework for synchronization in multi-hop networks,
leveraging signal characteristics and propagation delays. This
innovative approach simplifies deployment by training directly
on the devices, although it’s not suited for environments where
beacon periodicity is unknown to the devices.

III. RL-BASED CLOCK SYNCHRONIZATION

In this section, we present a SARSA-based RL solution
to autonomously adapt the sleep time of the end-devices and
compensate for changes in the clock drift. We first explain the
examined scenario, some SARSA fundamentals, and then, we
present the clock-synchronization process.

We examine the scenario where one transmitter (master)
periodically transmits packets (beacons) to simultaneously syn-
chronize several ED receivers (slaves) using a single beacon.
The master’s clock (time of the transmission) is used as a ref-
erence clock for the slave devices. The problem is challenging
because both the master and the slave devices may drift over
time. That means that the beacon periodicity may not be very
precise but slaves have to adapt their guard times accordingly.

It is assumed that the receivers are in sleep mode for the en-
tire period and wake up only to receive the transmitter’s beacon.
The objective of the approach, which independently runs on
each of the receivers, is threefold: (a) to quickly learn the time
interval between these successive periodic transmissions with-
out any prior knowledge of the network characteristics or the
environmental conditions; (b) to autonomously achieve a high
synchronization accuracy which may be different per ED due to
different environmental conditions and crystal characteristics;
and (c) to quickly adapt to network changes and minimize
desynchronizations.

Let us denote with d the time interval between two succes-
sive beacon transmissions initiated by a master device. No prior
information about d is known by the EDs. We assume that an
ED i is synchronized when it receives a beacon within a time
limit (see initial guard time threshold below) from the time
it wakes up. However, the algorithm may increase that time
if beacons are missed. The amount of time an ED i spends
waiting until it receives a beacon is denoted with δi. The value
of δi and whether it is withing the guard time threshold is used
to decide about future actions as well as about the sleep time
for the next iteration denoted with li.

An ED i is considered synchronized only when it has
successfully calibrated li while minimizing the likelihood of
missed beacons or timeouts by adjusting the guard time.
Particularly, δi and timeout threshold serve as important pa-
rameters that guide these adjustments, so that each ED i stays
synchronized.

Waking up too early or too late (see Radio on timeout below)
can lead to a missing beacon, and perhaps to a desynchroniza-
tion. An ED i considers itself “desynchronized” when it misses
the beacon for three successive iterations. Therefore, each ED
i employs SARSA to dynamically select an action to adjust its
guard time and its sleep time based on the outcomes of previous
beacon receptions. By following actions and selecting rewards
for a set of states, an ED i first discovers a rough interval
between two successive beacons d, and next, it fine-tunes li to
maximize its sleep time until the next wake-up.

To capture the status of the beacon reception, two significant
threshold values are defined in the system as follows:
Initial Guard time threshold: This is a time buffer set to
ensure that each ED i wakes up earlier than the expected
beacon transmission so that it has enough time to turn on its
radio and listen for incoming beacons. The guard time compen-
sates for accumulated drift time between two synchronization
iterations as well as scheduling changes. For example, setting
this threshold to 10ms means that the ED will wake up 10ms
before the expected arrival time of the beacon. If δi is less than
the guard time, the ED i assumes that it is well-synchronized,
however, it will continue to make micro-adjustments in the
guard time up to a point where it does not miss beacons and,
at the same time, δi gets as low as possible. This is assumed
to be the perfect synchronization and suggests that current Q-
values are effective, so no SARSA learning update is required
anymore.
Maximum Guard time threshold (Optional): This threshold
determines the maximum value that the guard time can reach.
The purpose of this threshold is to prevent ED from ending-up
with a very high guard time value due to successive beacon
misses that could lead to a very high energy consumption.
In practice, it can provide a trade-off between beacon loss
and energy consumption for super lossy and high clock-drift
devices.
Radio-on timeout: This threshold determines the maximum
amount of time the radio should be on while waiting for a
beacon before going back to sleep. If the beacon is not received

TABLE I
STATES (S), ACTIONS (A), AND REWARDS (R) OF THE APPROACH.

States Actions (ms) Rewards
0 0 (radio on/off) None
1 +1, +2, +3, +5, +10 0, 1
2 -1, -2, -3, -5, -10 0, 1
3 -2, -1, +1, +2 0, 1
4 +1, +2 0, 1
5 0 None

within this time limit, it is assumed that something may be
wrong with the synchronization, thus, the SARSA process is
triggered to adjust li in order to better align with the beacon
timing in future iterations. However, since beacons may also be
missed because of the path-loss, SARSA handles these cases
conservatively.

Table III describes the states, actions, and rewards of the
approach. The system is designed with six possible states, each
associated with a set of actions defined to adjust li:
State 0 (Initial calibration phase/Re-calibration): When the
device is first powered up it enters the initial calibration phase,
denoted as State 0. During this phase, the primary objective is
to discover d, which is crucial for synchronization. The process
of learning d is done through an exclusive action, referred to as
Action 0 (switching the radio on/off). If d is unknown, Action
0 allows the ED to constantly have each radio on for two
consecutive beacons. Once this happens, the state of the ED
changes, indicating the initial calibration is complete. If the
beacon transmission period d has unexpectedly changed and
ED has missed three consecutive beacons (i.e. 3 consecutive
radio-on timeouts), it will return to the State 0 and begin the
re-calibration process.
State 1 (Beacon received too early and outside the guard
time threshold): State 1 signifies that the ED has received
a beacon, but the arrival time exceeds the current guard time
threshold (i.e., high δi). This may happen when the ED wakes
up too early in relation to the beacon transmission. In this
state, the device employs actions designed to increase li, thus,
increasing the sleep time in future iterations.
State 2 (Beacon received but not close to the middle of
the guard time threshold): State 2 is specifically designed
for scenarios where the ED achieves synchronization (the
beacon is received within the guard time threshold or before
the radio-on timeout), but fine-tuning is required to achieve
a synchronization close to the middle of the guard time.
Shorter actions could be chosen but this would increase the
convergence time of the approach.
State 3 (Beacon missed – it was not received before the
radio-on timeout): State 3 signifies that the ED i has failed
to receive the beacon within the radio-on timeout threshold.
In this state, the device employs actions designed to reduce
li, thus, waking up earlier in future iterations. This adjustment
aims to correct δi for ED i to improve the alignment with future
beacon transmissions.
State 4 (Beacon missed – Guard time threshold adjust-
ment): State 4 comes after State 3 if a beacon is missed

Fig. 1. Setup of the experiments indicating 1 master device (circle) and 5 slave
device (stars). At the upper right corner, an ESP32-WROOM ED connected
to a Raspberry Pi Zero is shown to capture the ED’s serial output.

which may be caused because of the too-short selected guard
time. The guard time will not be increased if it exceeds the
maximum guard time threshold (if the latter has been set in
the system). Using this action, the algorithm can find a guard
time limit at which the ED does not miss beacons due to bad
synchronization. To do so, the initial guard time must be set to
a low value which will gradually be increased until the limit is
reached. Another approach would be to start with a high value
of initial guard time and decrease its value every time the ED
successfully receives a beacon in the middle of the guard time.
However, this scenario would require more steps to converge
and one more action to revert to the previous guard time state
once the device starts missing beacons.
State 5 (Perfect Synchronization): In this state, we assume
that an ED is perfectly synchronized when δi is very close to
the middle of the current guard time (+/- 1ms) and we do not
miss beacons. No actions are required in this case.

In SARSA, States 1, 2, 3, and 4 use a binary reward
structure where a reward of 1 indicates an improvement of
δi, and a reward of 0 indicates no improvement or a missed
beacon. This binary approach simplifies the learning process,
allowing the SARSA algorithm to quickly adjust li and refine
the synchronization performance.

Furthermore, as ED i adjusts its exploration rate and the
number of received and missed beacons, SARSA transits
from exploration to exploitation. This gradual shift helps it to
maintain an efficient sleep time.

IV. EVALUATION & DISCUSSION OF THE RESULTS

To evaluate the proposed approach, a series of experiments
were conducted with 1 master and 5 slave devices randomly
placed in a 40m2 room (see Fig. 1). The solution was im-
plemented on ESP32 devices such as ESP32-WROOM and
Lilygo TTGO V2 using the C++ programming language 1.
IEEE802.11 transceivers and a connection-less protocol called
ESP-NOW were employed for the tests. The solution was
compared to another synchronized approach [7] where the
interval between two successive beacon transmissions (i.e.,
d) was already known to the EDs and fixed throughout the

1https://github.com/nu-iot-lab/RL-Clock-Drift-Correction

https://github.com/nu-iot-lab/RL-Clock-Drift-Correction

TABLE II
EXPERIMENT PARAMETERS & SETTINGS

Parameter Value
Master/Slave devices 1/5
PHY ESP-NOW (IEEE802.11)
Data rate 250 Kbps
Tx power 20 dBm
Payload length 8 Bytes
Beacon transmission interval (d) 5, 10, 30 seconds
Initial Guard time threshold 10 ms
Maximum Guard time threshold 35 ms
Radio-on timeout 35 ms
Reinforcement Learning parameters
Learning rate (α) 0.1
Exploration rate (ϵ) 1.0
Minimum exploration rate (ϵmin) 0.05
Epsilon decay (ϵdecay) 0.001
Discount Factor (γ) 1

process. The average Received Signal Strength among devices
was -71dBm with a minimum of -88dBm. The misses due the
path-loss were negligible.

Three scenarios with different time intervals between bea-
cons were tested. Each scenario was executed 10 times and the
average results as well as the standard deviation of these results
are presented. We measured the Packet Reception Ratio (PRR),
the convergence time of the RL approach as well as its stability.
“Convergence” is defined as the time needed (expressed in
beacon rounds) to achieve a synchronization without losses.
It actually reveals how fast the EDs learn d and fine-tune their
guard and sleep time. “Stability” is defined as the maximum
δ values for all beacon rounds. Because in ESP32 devices the
wake-up time differs several milliseconds per round (mainly
due to the background RTOS scheduling), continuous sleep
time corrections are usually required. Stability expresses the
adaptation of the approaches to fluctuations in wake-up times.

In the SARSA algorithm, we have adopted standard pa-
rameter settings as outlined in Table II. A learning rate of
0.1 is selected to balance between the exploration and the
exploitation. The exploration rate is set to 1.0 to ensure that the
algorithm goes through all possible actions, which is crucial at
the early stages of the learning process in order to learn the
periodicity of the beacon transmissions. If it was set to a lower
value, SARSA would start exploiting the Q-table earlier, which
could prevent it from discovering potentially better options.

The minimum exploration rate of 0.05 maintains the baseline
level of exploration, preventing SARSA from becoming too
rigid. An epsilon decay of 0.001 means that the exploration rate
will decrease very slowly with each step and ensure a prolonged
period of exploration. However, the discount factor (γ) was set
to 1 so that our approach adjusts l and converges as quickly
as possible. This means that future rewards will be treated the
same as immediate rewards. For future rewards, the discount
factor will not be applied at all and SARSA will treat all actions
equally important. All these parameters together guide SARSA
to allow exploration in the beginning and gradually transfer to
exploitation.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 100 200 300 400 500

δ

(m
s
)

Iteration

RL Non-RL

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 100 200 300 400 500

G
u
a
rd

ti
m
e

(m
s
)

Iteration

RL Non-RL

Fig. 2. (left) Value of δ throughout a random instance for both approaches
and d=30sec (0 = beacon missed); (right) Value of guard time throughout a
random instance. The RL approach calibrates the guard time to a higher value
to avoid beacon misses.

Fig. 3. Power consumption comparison between the RL approach (upper) and
the non-RL approach (lower) for a random iteration.

Tables III and IV present the average results of the experi-
ments for the two approaches, respectively. The time intervals
between transmissions is equal to 5, 10, and 30 seconds. It
can be observed that the RL approach achieved a very high
PRR and very similar to the hardcoded solution. Indeed, in
all experiments, all devices successfully synchronized with the
transmitter and missed maximum 4 out of 500 beacons after
convergence. The initial synchronization was done within 2
beacons while the fine-tuning took another 10 to 11 beacons
(iterations) to converge to a fine-tuned synchronization. Despite
the huge clock-drift nature of ESP32 devices, the approach
showed remarkable stability with only 7-9ms average differ-
ence between the minimum and the maximum δ times. The
proposed solution achieved an even lower average δ time
compared to the non-RL approach. This is also shown in
Fig. 2(left) for a randomly chosen ED. The non-RL approach
could not achieve a δ value below 22ms. On the contrary,
the RL approach quickly reduces the variability in δ after the
calibration phase while achieving an average δ of 9ms. Four
misses occurred throughout the process as it can be seen from
Fig. 2(right). The approach reacted to those misses with a slight
increase in guard time. As it was stated previously, the ED starts
with a low initial guard time and gradually increases this value
for every miss until it find a guard time limit.

The guard time in the non-RL approach was fixed to 29ms
for all devices which was the maximum recorded value among
RL devices in the experiments. On the contrary, the ED
equipped with the RL approach could achieve a 62% lower
guard time (i.e., less waiting time) compared to the non-RL
approach. In terms of energy savings, this is translated to
an average of 9.5mJ less energy consumption (45% overall
improvement) in each round due to the reduced radio-on time
compared to the non-RL solution throughout the process. This
finding is confirmed by Fig. 3, where two devices – running
the RL and the non-RL approach, respectively – were deployed
on a power meter and a random iteration was used to compare
their power consumption. We can observe from this figure that

TABLE III
RESULTS OF THE RL APPROACH FOR VARIABLE BEACON TRANSMISSION INTERVALS d.

d
overall PRR PRR after stabilizing Convergence Stability δ Guard time

(sec) (%) the guard time (%) (beacons) (ms) (ms) (ms)
Avg σ Avg σ Avg σ Avg σ Avg σ Avg σ Min Max

5 99.16 0.43 99.52 0.86 10.12 2.47 7.24 2.49 7.25 2.25 17.6 5.87 11 29
10 98.64 0.83 99.05 1.27 9.76 2.68 7.68 2.81 7.64 3.06 18.6 6.14 12 29
30 99.0 0.24 99.68 0.33 10.88 4.64 9.08 2.94 8.52 2.65 21.2 6.13 13 29

TABLE IV
RESULTS OF THE NON-RL APPROACH FOR VARIABLE BEACON

TRANSMISSION INTERVALS d.

d
PRR Stability δ Guard time

(sec) % (ms) (ms) (ms)
Avg σ Avg σ Avg σ Fixed

5 99.65 0.19 13.25 6.08 27.81 0.01
2910 99.08 1.1 11.4 5.08 27.85 0.01

30 99.56 0.44 12.2 2.49 28.05 0.02

the “waiting for beacon” time is much longer in the non-RL
approach with a fixed guard time. The SARSA computation
takes place once the beacon is received (or missed), however,
its execution is negligible to be shown in the figure (∼85µs
long on average).

V. CONCLUSION & FUTURE RESEARCH

In this paper, we examined the possibility of autonomously
adapting the guard and sleep times of multiple receivers which
get synchronized by periodically receiving beacons from a mas-
ter device. A very low cost Reinforcement Learning approach
based on SARSA was proposed and evaluated using a testbed
consisting of ESP32 devices. The approach achieved an average
of 62% lower radio-on time compared to a non-RL approach
and 50% less energy consumption.

In the future, we are planning to implement an efficient
transfer learning approach so that new registered neighboring
devices can accelerate their learning process and adapt their
sleep times accordingly.

ACKNOWLEDGEMENT

This publication has emanated from research conducted
with the financial support of Nazarbayev University grant No.
11022021FD2916 for the project “DELITMENT: DEterminis-
tic Long-range IoT MEsh NeTworks”.

REFERENCES

[1] B. Sundararaman, U. Buy, and A. D. Kshemkalyani,
“Clock synchronization for wireless sensor networks: a
survey,” Ad hoc networks, vol. 3, no. 3, pp. 281–323,
2005.

[2] D. Capriglione, D. Casinelli, and L. Ferrigno, “Analysis
of quantities influencing the performance of time synchro-
nization based on linear regression in low cost WSNs,”
Measurement, vol. 77, pp. 105–116, 2016.

[3] K. Abdelfadeel, T. Farrell, D. McDonald, and D. Pesch,
“How to Make Firmware Updates over LoRaWAN Pos-
sible,” in 21st International Symposium on ”A World of
Wireless, Mobile and Multimedia Networks” (WoWMoM),
pp. 16–25, 2020.

[4] D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and
D. Pesch, “TS-LoRa: Time-slotted LoRaWAN for the In-
dustrial Internet of Things,” Computer Communications,
vol. 153, pp. 1 – 10, 2020.

[5] S. Yoon, C. Veerarittiphan, and M. L. Sichitiu, “Tiny-
sync: Tight time synchronization for wireless sensor net-
works,” ACM Transactions on Sensor Networks (TOSN),
vol. 3, no. 2, pp. 8–es, 2007.

[6] T. Chang, T. Watteyne, K. Pister, and Q. Wang, “Adaptive
synchronization in multi-hop TSCH networks,” Computer
Networks, vol. 76, pp. 165–176, 2015.

[7] Y. Magzym, A. Eduard, D. Urazayev, X. Fafoutis, and
D. Zorbas, “Synchronized ESP-NOW for Improved En-
ergy Efficiency,” in 11th International Black Sea Confer-
ence on Communications and Networking, IEEE, 2023.

[8] Z. Fan, Y. Xu, P. Liu, X. Li, R. Zhang, T. Yang, W. Wu,
Y. Li, L. Chen, and G. Zhang, “SSA: Microsecond-Level
Clock Synchronization Based on Machine Learning for
IoT Devices,” IEEE Transactions on Instrumentation and
Measurement, vol. 72, pp. 1–12, 2023.

[9] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosen-
blum, and A. Vahdat, “Exploiting a natural network effect
for scalable, fine-grained clock synchronization,” in 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pp. 81–94, 2018.

[10] K. He, C. An, J. H. Wang, T. Li, L. Zu, and F. Li, “Multi-
hop Precision Time Protocol: an Internet Applicable Time
Synchronization Scheme,” in IEEE/IFIP Network Opera-
tions and Management Symposium, pp. 1–9, 2022.

[11] J. J. Pérez-Solano and S. Felici-Castell, “Adaptive time
window linear regression algorithm for accurate time
synchronization in wireless sensor networks,” Ad Hoc
Networks, vol. 24, pp. 92–108, 2015.

[12] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The
flooding time synchronization protocol,” in Proceedings
of the 2nd international conference on Embedded net-
worked sensor systems, pp. 39–49, 2004.

[13] S. Ganeriwal, D. Ganesan, H. Shim, V. Tsiatsis, and
M. B. Srivastava, “Estimating clock uncertainty for effi-
cient duty-cycling in sensor networks,” in Proceedings of
the 3rd international conference on Embedded networked
sensor systems, pp. 130–141, 2005.

[14] E. Abakasanga, N. Shlezinger, and R. Dabora, “Unsu-
pervised Deep-Learning for Distributed Clock Synchro-
nization in Wireless Networks,” IEEE Transactions on
Vehicular Technology, 2023.

	Introduction
	Related Research
	RL-based Clock Synchronization
	Evaluation & Discussion of the Results
	Conclusion & Future Research

