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Abstract

Since Wireless Sensor Networks (WSNs) consist of nodes with limited power resources, meth-
ods that extend their energy lifespan are always in the spotlight. A potential method is the use
of RF-power harvesting antennas which can absorb energy from radio frequency (RF) signals
and transform a part of it into electricity. Dedicated energy transmitters (ETs) are used to emit
power to the nodes. In this paper, we model the amount of harvesting energy as a function
of several parameters such as the received power, the efficiency of the harvesting module and
the transmission time. We consider a simple communication model that separates the ETs’
transmissions with the node data transmissions to avoid interference whilst we allow multi-hop
energy transfer between the nodes when it is achievable. However, the ultimate purpose of this
paper is to examine whether the cost of the investment of using energy harvesting nodes can
be covered by achieving a lower operation cost; that is longer and cheaper operation times and,
thus, less frequent maintenance. We consider several scenarios with different node densities and
transmitter populations. Simulation results show that the use of RF-energy harvesting nodes
can save a significant amount of energy, while the cost of the investment can be (theoretically)
covered in less than 7 years for dense networks.

1 Introduction

Wireless sensor networks are capable of periodically monitoring their vicinity and reporting impor-
tant information about the integrity and security of their environment. The sensor nodes are usually
powered by batteries and depending on how often they take measurements and communicate with
other devices, their energy may be depleted fast. To tackle this problem, a new technology has been
recently developed by harvesting energy from wireless transmitted signals. This technology uses a
new type of antenna which can convert part of the received signal power to electricity. RF-power
harvesting has been recently attracted a lot of attention due to its several energy-critical applica-
tions in the broad area of Internet of Things [28]. Some examples are healthcare applications [32],
structural monitoring [10], and industrial applications [8]. All these applications take advantage of
the ability of this technology to charge batteries by distance while the battery replacement may be
a hard task since the nodes are often placed in inaccessible places or the cost of the replacement
may be high.

Depending on the transmitted power and the distance between the transmitting source and the
receiver, a node can harvest from some uW to some mW of power [13]. However, this technology is
still new and presents some major limitations [17]. First, the harvested power dramatically decreases
when the receiver is moving more than few meters away from the source. Second, the conversion
efficiency is substantial only for a small range of distances. Third, there is a minimum received
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signal power, below which no conversion is possible, shortening the actual harvesting range. Finally,
there are power losses due to leakage or discharging properties of the storage mediums.

Despite its weaknesses, wireless charging with dedicated ETs is a reliable way to charge low
power consumption devices like WSN nodes, mainly due to the predictable and uninterrupted power
supply. Other harvesting methods, like solar panels, exhibit higher energy gains (during sunlight),
but the amount of energy depends on time, weather and seasonal conditions. Moreover, the solar
radiation is in general case unpredictable and disappears at night. Another disadvantage is that
panels take much space and require extra equipment like inverters and huge batteries to store the
spare energy and present high installation costs as well. Due to these disadvantages the use of solar
panels is considered impractical for indoor applications.

The energy transfer in RF-power harvesting is achieved either by taking advantage of the am-
bient RF signals transmitted by nearby primary devices or by dedicated chargers that continuously
transmit energy beacons. Ambient harvesting has the advantage that does not require any additional
equipment other than the harvesting module, however, the amount of harvesting power varies over
time and it is much lower compared to dedicated chargers [3]. In this paper we consider dedicated
and stationary ETs whose purpose is the periodic emission of RF signals. We model a network con-
sisting of nodes and ETs taking into account the harvesting, communication and storage limitations
described above. Unlike nodes whose power capacity is limited, the ETs are plugged into the power
outlet and, thus, they have unlimited power resources. For simplicity reasons, we divide the time in
rounds and every round includes two phases. The first phase allows the transmission of sensing data
while the second phase is used for ET data transmissions. From now on we call the ET transmissions
as “fake data” to distinguish them from node data transmissions.

Due to the fact that nodes that are closely to the ETs present high energy gains, we enhance our
model by investigating whether these nodes could spend a spare part of their energy by transmitting
some extra fake messages to their neighborhood. This action, known as multi-hop energy transfer,
can extend the energy transfer range beyond the borders of the harvesting range of the ETs. We
show that due to the current hardware limitations the performance gain is very limited for average
or high distances.

In this paper, we consider the critical parameter of the cost in deploying and maintaining a
network of nodes with RF-power harvesting capabilities. More specifically, we compute the capital
and the operating expenditures focusing on indoor deployments. Taking into consideration the
extra cost of the harvesting units, the cost of ETs, the cost of electricity, as well as the labor cost
of maintaining a WSN (battery replacement), we introduce the Minimum Reimbursement Time
problem. We particularly assess the time needed to cover the investment cost by an eventual reduced
maintenance cost using a harvesting network. Since the maintenance cost is strongly connected with
the network density, we examine a number of scenarios with different node and ET populations and
we present extended simulation results. We extend the “Minimum Reimbursement Time” problem
by introducing the problem of maximizing the coverage area whilst achieving the minimum possible
reimbursement time.

The present paper extends our previous work [33] but it differentiates in the following ways: (a)
the energy harvesting model is now more accurate, (b) a condition for networks consisting of nodes
without batteries has been added, (c) the “Maximum Area Coverage” problem is introduced, (d)
the position of the ETs is not fixed but it is computed based on the position of the nodes, (e) the
simulation results derive by evaluating all the possible combinations between fake packet rate and
number of ETs, and (f) the maximum number of ETs is increased from 8 to 16.

The contribution of this paper is threefold. First, we present the theoretical harvesting and
communication background for RF-power harvesting networks and we provide conditions whether
multi-hop energy transfer and node deployment without batteries are feasible. Second, we introduce
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the “Minimum Reimbursement Time” and the “Maximum Area Coverage” problems, to give some
insights about (a) the scalability of the cost of a deployment consisting of RF-power harvesting
devices, (b) how much of this cost can be covered by an eventual lower operating cost, and (c)
finding upper bounds in terms of number of years for different node density deployments. Finally,
extensive simulation results are conducted to evaluate the effectiveness of RF-power harvesting in
terms of energy and cost savings.

The rest of the paper is organized as follows; Section 2 surveys the related work in the area of
RF-energy harvesting WSNs. In Section 3 we present the energy harvesting and communication
model while in Section 4 we give conditions to achieve multi-hop energy transfer and node deploy-
ment without batteries. In Section 5 we formulate the ‘Minimum Reimbursement Time” problem
and we extend it by introducing the “Maximum Area Coverage” problem. Section 6 presents the
theoretical and simulation results for different network scenarios, while Section 7 assesses the capital
and operating costs. Finally, Section 8 concludes the paper and presents ideas for future work.

2 Related work

In the last few years there is an increased research effort for energy harvesting technologies due
to the increased demand of power resources. The work of Basagni et al. [2] surveys all these
technologies presenting their advantages and disadvantages. In the current paper we focus on RF-
power harvesting which is frequently met in an indoor or outdoor environment since, nowadays,
plenty of devices operate wirelessly, like television broadcasting, cell phones, Internet equipment
etc..

RF-energy harvesting networks have been extensively studied from different research aspects.
[17] presents an overview of the RF-power harvesting networks including system architecture, RF
energy harvesting techniques and existing applications. Then, it surveys the circuit design as well as
the state-of-the-art circuitry implementations, and reviews the communication protocols specially
designed for this type of networks. Soyata et al. [26], focus on design tradeoffs and process alterations
to represent the diversity in the applications requiring wireless RF harvesting units. They, also,
include an analysis of system combinations, and how to wake up units, active storage, and duty
cycling play roles in the consumption and harvesting of RF energy.

Recent research studies on static charger scheduling strategies, mobile charger dispatch strategies,
and wireless charger deployment strategies are additionally reviewed in [18]. New research challenges
and opportunities on RF-power harvesting networks focusing on their practical implementations are
presented in [20]. A broad based perspective on the present RF-power harvesting state-of-the-art to
the researchers and application engineers dealing with wireless transfer of power is presented in [1].
A recent wireless power transfer implementation using beamforming and duty cycle optimization is
proposed in [5]. The sensor node could stably maintain the stored energy at the distance of 2.6m
away from the antenna array by joint circuit/physical/radio link layer design and optimization.

The problem of computing the optimal number of readers to cover an area with static or mobile
RF-power harvesting RFIDs is studied in [12]. The authors propose an analytical model to determine
the optimal distance between the readers. The work of Fuentes et al. [6] aims at bounding the
minimum cumulative power that ETs need to inject into the network, such that the recipient nodes
harvest sufficient power to operate. The authors show that the overall power decreases with the
number of ETs and it is lower-bounded by the number of transmitters and the channel path-loss.

Pang et al. [22] examine the problem of finding the optimal number of chargers to replenish
the energy of a set of sensors. The charger positioning problem has has been also studied as a
problem of maximizing an objective function subject to a power budget [31]. The authors formulate
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an optimization problem and show that it is NP-Complete. A similar problem is studied in [7].
The authors propose a wireless charger placement problem definition that takes into account the
electromagnetic radiation. The solution they propose guarantees that the electromagnetic radiation
levels are safe for every location on the plane. The authors of [16], also, focus on the safety and
security problems related to wireless power transfer and highlight their cruciality in terms of efficient
and dependable operation of RF-based harvesting networks.

Finally, a promising method to extend the energy harvesting range is the use of multi-hop energy
transfer [14, 21]. In [14], two-hop energy transfer has been experimentally tested. The findings show
that the optimal position for maximizing the performance gain has been found to be when the
intermediate node is closer to the source. In [21], sparse and dense network deployment cases
are tested. The results show an average 2-hop performance gain of 6% to 12%. However, both
experiments use devices very close to each other.

In this paper, we study the problem of cost in RF-power harvesting networks, a factor that has
not yet been taken into account in the existing literature.

3 RF-power harvesting & communication models

3.1 Energy harvesting model

A number of ETs with omni-directional antenna and fixed positions is used to send fake packets
and recharge nearby nodes. The nodes are equipped with an extra RF module capable of harvesting
power from the transmitted signals. Multiple nodes can be simultaneously charged by a single ET
[27].

The amount of power each node receives is affected by its distance from the transmission source
and the environmental conditions. Eq. (1) describes the total amount of energy that can be harvested
by a node i surrounded by T energy transmitters. The amount of power a node receives equals to
the accumulated received power by the T transmitters [11].

Ehi =

∫ t

0

T∑
j=1

P dijrx f
dij
ψ · k′

θ
dt, (1)

where t is the transmission time, P
dij
rx is the received power at distance dij , f

dij is the efficiency of

the harvesting antenna for P
dij
rx , ψ is the packet size, k′ is the number of fake packets transmitted

per time unit and θ is the transmission data rate. Indeed, the number of fake packets (i.e., k′)
corresponds to the period of time a transmitter is active.

The received power at distance d is given by the following propagation model [29]:

P drx = P0
e2σG

d2b
, (2)

where e2σG has a log-normal distribution with a shadowing coefficient σ (G ∼ N(0, 1)). The term
1/d2b accounts for the far-field path loss with distance d, where the amplitude loss exponent b is
environment-dependent. P0 is the received power at reference distance which can be experimentally
found.

From the equations we have so far we can observe that the harvested energy depends on the
distance between the nodes, the transmission source, the transmission duration, the communication
frequency as well as the efficiency of the harvesting module f (0 ≤ f < 1). This efficiency depends
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on the received power at the given distance and it can strongly affect the performance of the har-
vesting system. For example, the best efficiency of Powercast’s commercial RF-harvesting module1

is achieved when the input power is around 4mW (i.e., less than 1 meter distance while transmitting
at 3W power). The efficiency remains high (>80%) for small distances but decreases a lot as the
node is moving away from the transmitter. Consequently, in applications requiring a higher node
density the distance between the nodes and the transmitters is lower, a fact that increases both
received power and efficiency.

3.2 Communication model

The ETs send fake packets to the nodes to decrease their energy consumption. Obviously, the more
the packets the higher the energy gain. Similarly to [30], we split the transmission time in rounds
where each round has two phases (see Figure 1). During the first phase, named “Sensing data phase”,
the nodes communicate with the sink and transmit their sensing data. We allow two or more nodes
transmitting at the same time, unless they are in the communication range of each other. We, also,
assume a fair resource allocation model where all the nodes have the same opportunity to access the
network. In the second phase, named “Fake data phase”, we allow the transmission of fake packets.
The transmitters can transmit fake packets at the same time during this phase. The higher the rate
of fake packets the longer the “Fake data phase”. If the two phases overlap each other, a number of
nodes will interfere with the ETs. In other words, a very high fake packet rate could cause network
problems like interference, collisions and delays.

Sensing data Sensing dataFake data Fake data

Round 1 Round 2

0 S
...

2S

Figure 1: Transmission slots, phases and rounds.

The transmission time is divided in S slots and we allow only one data transmission per slot to
avoid interference. However, a single time slot may be reserved by multiple ETs at the same time.
We assume that the nodes are well synchronized using a precise time synchronization protocol [25].
Each time a node is ready to transmit a packet it switches to active mode while it remains in sleep
mode if it is not transmitting. In sleep mode a node consumes much less energy but it can still
harvest energy from the RF-harvesting antenna.

4 Special cases

4.1 Multiple-hop energy transfer

Since some nodes which are very close to the transmitters may absorb more energy than they
consume, we allow them to spend this extra amount of energy by transmitting some fake packets to
their neighbors. In this way, we aim to extend the harvesting zone beyond the current harvesting
range of the ETs. In fact, a node plays the role of the energy relay between the ET and its neighbors.
All the node fake data transmissions take part during the second phase of a round. A node i can
send fake packets within a round of τ time units if the extra harvesting energy it finally gets is equal

1http://www.powercastco.com
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or higher than the energy cost of transmitting at least one fake packet:

Eextrai l
i ≥ P ′

tx

ψ

θ
, (3)

where,

Eextrai =

∫ t<τ

0

dt

 T∑
j=1

P dijrx f
dij
ψ · k′

θ
− Ptx

ψ · k
θ

− Eτrest. (4)

Ptx is the transmitted power of the nodes (for sensing data) and Eτrest is the energy cost for the
rest of operations. li is a function which describes the energy loss due to discharge properties of the
capacitor [9] and it is equal to li = λEih, where λ is the power loss factor (0 < λ < 1).

The total number of fake packets a node can send (i.e., k′′i ) depends on how much energy a node
harvests during the “Fake data phase” and it is given by Eq. (5). In order to technically achieve
multi-hop energy transfer, we assume that the extra amount of energy is stored in a super-capacitor
and it is used when the capacitor and the node battery energy levels are above a threshold.

k′′i =

⌊
Eextrai l

i θ

ψ P ′
tx

⌋
. (5)

4.2 Deployment without batteries

It is obvious that deploying an ET close to a node, the latter can operate without using batteries
since the energy it harvests it is enough to operate for one round. In this case, an adequate amount of
energy is stored in a super-capacitor and can be spent for the normal node activity or for transmitting
multi-hop fake packets. A node i can operate without batteries when the following condition holds:

∫ t<τ

0

dt

 T∑
j=1

P dijrx f
dij
ψ · k′

θ

 li −
∫ t<τ

0

Ptx
ψ · k
θ
− Eτrest ≥ 0. (6)

From (2) and (6) we can compute the maximum node distance away from a charger and, thus,
the minimum number of ETs in the network so that no batteries are required.

5 Reimbursement time & coverage problems

5.1 The minimum reimbursement time problem

In this section we formulate the minimum reimbursement time (MRT) problem as a function of the
capital expenditures (CAPEX) and operating expenses (OPEX). MRT is a minimization problem
of the time needed to cover the investment cost of deploying a WSN with harvesting capabilities.

Specifically, the CAPEX and the OPEX of deploying and maintaining a WSN with and without
harvesting is compared. For each deployment, notated with D, we optimize MRT by minimizing the
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“Reimbursement Ratio (RR)” as follows:

RR(D) = min

(
CAPEXwh

D − CAPEXwoh
D

OPEXwoh
D −OPEXwh

D

)
,

s.t.

CAPEXwoh
D = n(Cnd + Cb), (7)

CAPEXwh
D = n(Cnd + Crb + Chu) + T · Cst, (8)

OPEXwoh
D = n(Cmnt + Cb), (9)

OPEXwh
D = p(Cmnt + Crb) + Cel, p ≤ n, (10)

Cmnt = tmntCmh, (11)

Cel = T (Celbtelb + Celr telr )
P ′
txψ k′

θ
, (12)

OPEXwoh
D > OPEXwh

D , (13)

where wh and woh stand for “with harvesting” and “without harvesting” respectively. All the
individual costs and times are defined in Table 1. Indeed, RR(D) determines how much time is
needed to cover the extra CAPEX with a reduced OPEX. The higher the difference between the
OPEX with and without harvesting, the shorter the time of reimbursement.

Table 1: Costs and times that affect CAPEX and OPEX.
Cost/Time Definition

Cnd node cost
Cb battery cost
Crb rechargeable battery cost
Chu harvesting unit cost
Cst energy transmitter cost
Cmnt maintenance cost to replace a battery
tmnt time to replace a battery
Cmh man-hour cost
Cel electricity cost of the stations
Celb electricity cost in peak hours
Celr electricity cost in off-peak hours
telb number of peak hours
telr number of off-peak hours

The CAPEX includes the cost of the nodes (with or without a harvesting unit), the batteries
(rechargeable or not) and the ETs. On the other hand, the OPEX consists of the spare battery cost,
the maintenance cost by a technician and the electricity cost of the stations in case of harvesting.
The electricity cost depends on the packet rate of the stations and it is divided in the cost during
the peak hours of the day and the cost during the off-peak hours of the day (typically during the
night). The maintenance cost depends on how much time a technician spends to replace the battery
and the man-hour cost.

Looking at Eq. (7), since the capital expenditures are constant for a given deployment (number
of nodes and chargers), the reimbursement ratio is minimized by maximizing its denominator. Since
OPEXwoh

D is, also constant, the denominator is maximized by minimizing the operating costs when
harvesting is applied. OPEX with harvesting is affected by the number of nodes that need mainte-
nance (i.e., p) and the electricity cost (i.e. Cel) (see Eq. (10)). Apparently, the lower the p and the
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Cel, the lower the reimbursement ratio. The higher the fake packet rate, the higher the harvested
energy and, thus, the lower the probability of maintaining a node. On the other hand, a higher fake
data packet rate increases the electricity cost and the total operating expenditures (see Eq. (12)).
Hence, the MRT problem is transformed to a problem of finding a trade-off between electricity and
maintenance cost.

5.2 The maximum area coverage problem

In correspondence with the MRT problem, we introduce the Maximum Area Coverage (MAC) prob-
lem as a function of the RR and the node density. MAC is a broader problem whose objective
is, given a maximum set of nodes or budget, to maximize the covering area A while achieving the
minimum possible RR. As covering area is defined an ubiquitous continuous convex area monitored
by a set of nodes, positioning them in that way so that no coverage holes (uncovered spots) exist
between them. A special case of covering area is a square area as the one presented in Figure 2.
Assuming a quadratic node deployment, A is equal to 2nR2

s, where Rs is the sensing range of the
nodes and a is the area side2.

Figure 2: The maximum square area covered by 16 nodes using the quadratic node deployment.

6 Evaluating RF-energy harvesting network scenarios

6.1 Evaluation parameters & methodology

In this section we evaluate the proposed model by presenting theoretical and simulation results. We
assume three types of scenarios with 256, 100, and 36 nodes respectively. We call the three scenarios,
“Dense”, “Normal”, and “Sparse” respectively. The nodes as well as the transmitters are placed on
a square grid-based terrain with 50 meters side. We assume that the transmitters are located at a
slightly different height level to avoid blocking and shadow loss effects [20]. We vary the number of
ETs from 1 to 16 with an increment of 1 as well as the fake packet rate and we measure (a) the
number of interfering nodes, (b) the energy consumption, and (c) the percentage of nodes that need
maintenance. Due to the presence of random values, we run each instance 100 times and the average
results are presented.

2since 2Rs
√
n =

√
2a and a2 = A.
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Regarding the node and ET characteristics, we consider the following values (summarized in
Table 2): Ptx = 65mW, ψ = 127 bytes, θ = 250Kbps, k = 1/30, τ = 30 secs, Prest = 0.15mW,
P0 = 10mW, σ = 1, and b = 1. Rc = 30m and R′

c = 100m are the transmission ranges of
the nodes and stations, respectively. 5% energy loss between recharges is considered (λ = 0.95).
Node parameters correspond to Mica2 sensor nodes [24] using a Zigbee communication module at
915MHz. Regarding the harvesting efficiency we used the values provided by Powercast for P2110B
model (version 1.1) operating at the same frequency. The values used for the propagation/shadowing
model correspond to indoor communication only [23].

Table 2: List of variables and their definition.
Variable Definition

Eh Harvesting energy
T Number of ETs

Prx
d Received power at distance d

fd Harvesting efficiency at distance d
ψ Packet size
k Data packets per time unit
k′ Fake data packets per time unit
k′′ Number of extra fake data packets (transmitted by the nodes)
θ Data rate
P0 Received power at reference distance
σ shadowing coefficient
b Path-loss exponent
G Environment-dependent random variable
τ Round length
l(·) Energy loss function
Ptx Transmission power of the nodes

Prest, E
t
rest Power / Energy spent for the rest of operations for t time units

Rc Communication range

6.1.1 Energy transmitter placement

The position of the transmitters is a parameter that heavily impacts the harvesting energy. The
optimization of their position can lead to better performance and, thus, lower operating cost. How-
ever, this particular optimization problem has been proven to be NP-Complete and approximation
algorithms have been proposed to tackle it [15, 4, 11, 31, 7]. Since in this paper we assume that all
the nodes consume the same amount of energy per round and they have equal distances with each
other, we compute the transmitter positions by minimizing the average distance between the trans-
mitters and the nodes while keeping as many nodes as possible within the transmitters’ harvesting
range. A similar approach is presented in [31].

Figure 3 shows a depiction with the position of the ETs (X’s), the grid of nodes (dots) as well as
the nodes consumption (color) during a single round. A scenario with 100 nodes is used. Each plot
corresponds to 2, 4, 6 and 8 ETs respectively. The theoretical maximum number of fake packets is
used. We can see that nodes close to the ETs have a very low or even zero consumption. On the
contrary, nodes close to the borders of the terrain or nodes far from the transmitters exhibit the
highest consumption since they do not harvest almost any energy.
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Figure 3: A grid with 100 nodes and 2, 4, 6 or 8 ETs respectively.

6.2 Consumption

Figure 4 illustrates the average energy consumption for the three scenarios when 4 ETs are used.
As it is expected, the energy consumption decreases as the fake packet rate increases. We, also,
observe that interference little affects the energy cost since, on average, harvesting covers part or all
the energy loss. The average consumption is almost 3 times lower than the consumption without
harvesting considering the theoretical maximum fake packet rate.

6.3 Maintenance

Figure 5 shows the empirical cumulative distribution function (CDF) of the percentage of the re-
maining energy level in the network for one year of operation. 100% on the X axis means that a
node harvests at least equal amount of energy compared to what it consumes. On the other hand,
0% indicates the proportion of nodes whose remaining energy level is above 0. We can observe that
more than half of the nodes do not consume any energy for all the three scenarios. The other half
has a remaining energy level of about 25-75% of the maximum, while all the nodes have an energy
level above 0.

6.4 Multi-hop energy transfer

Figure 6 presents the theoretical number of extra fake packets transmitted by a node during one
round located at different positions away from an ET. The results obtained using Eq. (5). They show
that the number of multi-hop packets is very limited when the distance between the participants
is high but it highly increases as we move the node closer to the transmitter. We mention that no
extra packets were sent with the highest tested distance (i.e., 8m) which means that the multi-hop
energy transfer is applicable only for below average harvesting ranges.
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Figure 4: Energy consumption in relation with the number of fake packets/sec for the dense, normal
and sparse scenario respectively (4 energy transmitters are used).
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Figure 5: Empirical CDF of the remaining energy level in the network for the dense, normal and
sparse scenario respectively (4 ETs are used)

6.5 Node deployment without batteries

Figure 7 depicts the energy consumption of a node for a single round. Variable number of data packet
rates and node distances were tested. The results show that the maximum distance that satisfies
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Figure 6: Number of multi-hop packets for different node distances and different fake packet rates.

Eq. (6) varies from 3 to 3.5 meters. Indeed, in order to cover an area of 50x50 square meters, more
than 100 ETs are needed which is unacceptable both in terms of investment cost and in terms of
installation feasibility. Hence, based on the node parameters considered in the present paper, it is
infeasible to retain in operating condition a network consisting of nodes without batteries.
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Figure 7: Node energy consumption (gradient) for different node-ET distances and data packet
rates.

7 Assessing capital and operating costs

7.1 Evaluation parameters & methodology

In this section, we solve the MRT and MAC problems and we present numerous results. The poly-
nomial nature of the two problems allows us to examine all the possible combinations of fake packet
data rate and ETs for each instance of the problem. Indeed, approximately up to 16x250 combina-
tions per instance of the problem are examined. The exhibited values represent the optimal average
solutions for each examined scenario. In order to evaluate OPEX and CAPEX, the following values
are used for the parameters of Table 1. All the costs are in Euros. Cnd=503, Cb=1, Crb=1.5, Chu=30,
Cst=1004, tmnt=10 min5, Cmh=356, Celb=0.1636 per KWh, Celb=0.1150 per KWh, telb=16h, and

3Approximate TelosB node price for a big bulk order.
4The prices provided by http://www.mouser.fr/
5Approximate average time to unscrew the node box, change the battery, screw the box back and move to the

next node.
6Approximate man-hour labor cost in France as provided by Eurostat.
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telr=8h7.
In this section, we assume that the battery capacity is enough to provide power to a node for one

year without harvesting. We consider that a technician maintains the network every 6 months after
the first year. When harvesting is used, some nodes may last for 1, 2 or more years, which means
that different number of nodes is maintained every six months. For example, in the first year, all the
batteries which cannot last more than 1.5 years are replaced. The second maintenance includes the
replacement of the batteries which cannot last 6 months more and so on. However, batteries replaced
after the first year, will still need to be replaced again during the next maintenances. We keep track
of battery replacements within the first 4 years and we compute the expenses per maintenance visit
as well as the average results within these 4 years. After 4 years, all the batteries have been replaced
except of the nodes that harvest more energy than they consume.

7.2 Operating expenditures
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Figure 8: OPEX of the first year in relation with the number of fake packets/sec for the dense,
normal and sparse scenario respectively (4 ETs are used).

Figure 8 presents the OPEX of the first maintenance when 4 ETs are used. For the dense scenario,
we see that the best result is achieved when approximately 170 packets/sec are transmitted. At that
point, the OPEX with harvesting is almost 3 times lower than the cost without harvesting. In the
second scenario, the cost presents a zig-zag shape which is explained as follows. As the packet rate
increases more and more nodes save more energy. It means that at certain levels of packet rate
an amount of nodes lying on the same distance away from the stations will have enough energy to

7The values are available on EDF website.
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operate more than 1.5 years and, thus, the OPEX massively decreases. In the meantime between
these specific levels of packet rate, the OPEX slightly increases due to the increased electricity cost.
The combination of the reduction of the consumption and the increase of the electricity cost causes
the zig-zag effect. Concerning the sparse scenario, the OPEX with harvesting hardly exceeds the
OPEX without harvesting, which means that the CAPEX will take long time to be covered. The
OPEX’s of the next maintenances present the same behavior.

7.3 Reimbursement Ratio
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Figure 9: RR per scenario and per number of ETs.

Figure 9 depicts the average RR (throughout the 4 years) for the three evaluated scenarios. To
test all the possible combinations between the number of ET and fake packet rates, we vary the
number of ET from 1 to 16 with an increment of 1 and the fake packet rate from 1 to the theoretical
maximum. The best fake packet rate instance is displayed on the top of every bar of the graph. The
results show that: (a) the best RR is achieved when 8-9 or 16 ETs are placed for the three scenarios
respectively. Indeed, due to the square shape of the terrain, the node area can be more efficiently
covered using ET populations of power of two. (b) The higher the density, the shorter the RR. As
it was shown by the theoretical results, as more nodes are placed close to the ETs, less nodes need
maintenance which results to a lower RR. Simulations performed with denser networks presented an
even lower RR (see Figure 10). (c) The cost of deploying the sparse RF-power harvesting network
cannot be covered in a reasonable amount of time. Indeed, more than 50 years are needed to cover
the investment cost of the evaluated sparse network which is unacceptable and infeasible. (d) The
higher the number of ETs, the lower the best fake packet rate. This happens due to the fact that
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the increased CAPEX of placing more ETs must be covered by reducing the OPEX which implies
to lower electricity cost and, thus, lower number of fake packets.
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Figure 10: RR over the best packet rate instance for a very dense scenario (1 node/m2).

7.4 Maximum coverage area
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Figure 11: Best RRs for different node and ET populations (triangular deployment).

One of the observations of the previous set of simulations is that the node density is the most
important factor in maintaining RF-power harvesting WSNs. Moreover, as introduced in Section
5.2, given a set of nodes there is a maximal area covered by the nodes where the RR is minimized.
Since the node deployment method affects the problem solution, we consider the two most common
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Figure 12: Best RRs for different node and ET populations (quadratic deployment).

deployment methods; the triangular and the quadratic. It has been proven that the triangular
deployment maximizes the coverage area [19], decreasing however the network density.

Figures 11 and 12 present the RR achieved for 3 different node densities with variable number of
nodes and ETs. The first set of figures correspond to the triangular node deployment and the second
one to the quadratic deployment. It is obvious that the same area is covered by different number of
nodes for each of the deployment methods entailing a different CAPEX. However, in this section we
assess whether the triangular or the quadratic method is more efficient in terms of reimbursement
ratio. The results show that although the quadratic deployment needs higher number of nodes to
cover the corresponding area, it achieves better results than the triangular deployment.

Concentrating on the quadratic results we can conclude that the larger the deployment, the lower
the reimbursement ratio. More specifically, for the dense scenario, the best RR is approximately 6.5
years and it is achieved when 256 nodes are placed (2,304 m2). Similar performances are achieved
by other node populations (marked with ellipses). For the normal scenario, the best performance is
achieved when 81 nodes are placed, a number that corresponds to an area of 2,025 m2. For both
dense and normal density scenarios, the optimal number of ETs is 4, 8 or 9. On the other hand, the
sparse scenario presents a different behavior since the best solution is achieved when the number of
nodes coincides with the number of ETs. The maximum coverage area is 1,024 m2.

8 Conclusion & future work

Wireless sensor networks consisting of nodes with RF-energy harvesting capabilities were considered
in this paper. A number of ETs was used to periodically recharge the nodes. We modeled the
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energy consumption of the nodes and we showed that it mainly depends on the distance between the
nodes and the transmitters as well as on the number of fake packet transmissions. We gave another
dimension to our problem by introducing the problem of minimizing the reimbursement time of the
investment and the problem of maximizing the coverage area with the minimum CAPEX-OPEX
ratio. Theoretical and simulation results showed that a network with RF-energy harvesting nodes
saves up to the two thirds of the consumed energy compared to the case where no harvesting is
used. In terms of cost, the findings showed that the current technology encourage the use of RF
harvesting only for networks with higher node density. In the future, we plan to use a multi-hop
communication model for data delivery and consider the case where both nodes and ETs transmit
packets with variable rate.
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