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Abstract

Wireless charging brings forward some new principles
in designing energy efficient networks. A number of
energy transmitters are placed in all over the network
to recharge power constrained nodes. Since a few
only nodes can remarkably benefit from the transmitter
power emission, we organize the nodes in clusters and we
propose an efficient localized algorithm as well as a cen-
tralized one to compute the charger position such that
the cluster lifetime is maximized. Simulation results are
presented to show the effectiveness of the approaches.

1 Introduction

A technology that has been recently developed takes ad-
vantage of the transmitted neighboring RF signals to
harvest a small portion of energy. More specifically, a
new type of antenna is used which can convert part of the
received signal power to electricity. Depending on the
transmitted power and the distance between the trans-
mitting source and the receiver, a node can harvest from
some uW to some mW of power [6]. However, this tech-
nology presents some major limitations mainly due to
the low efficiency of the conversion unit [7]. First, the
harvested power rapidly decreases when the receiver is
moving more than few meters away from the source.
Second, the conversion efficiency is substantial only for
a small range of distance, and third, there is a minimum
received signal power corresponding to a maximum dis-
tance, below which no conversion is possible.

In this paper, we consider networks consisting of
nodes which can acquire energy from energy transmit-
ters (chargers). We assume that a charger periodically
and omni-directionally transmits energy packets to the
network. Due to the limitations of the harvesting tech-
nology, a few only nodes can substantially benefit from
the energy data transmission whereas a possible use of
multiple chargers in all over the network could consider-
ably increase the operation costs. For these reasons we
organize the network in clusters so that the majority of
the nodes use short communication links and the most
of communication burden falls onto the shoulders of the
cluster heads. By using chargers close to these nodes we
can alleviate their communication cost and, thus, extend

the network lifetime.

However, the question that rises up is where to place a
charger so that the network lifetime is prolonged as much
as possible. We explain that this placement problem is
a special case of the Weber problem and we propose a
local search algorithm that finds a solution close to the
optimal. The algorithm can operate in both centralized
or distributed manner since it uses localized information
and a number of successive small steps to gradually move
the charger more efficient positions. We, also, present an
exhaustive search algorithm that examines a big range
of possible solutions exhibiting, however, higher compu-
tation cost.

2 Related work

RF-energy harvesting networks have been extensively
studied from different research aspects. For a complete
literature review the reader can refer to [7] and [2]. We
cite, here, the most recent research activities closer to
our work.

A placement and charging problem is examined in
[10]. The authors assume that a set of candidate loca-
tions for placing chargers is given and they find a charger
placement and a corresponding power allocation to max-
imize the charging quality. The problem is proved to be
NP-Complete. Moreover, a wireless charger placement
problem that that takes into account the electromag-
netic radiation safety is tackled in [3]. Simulations show
that in terms of charging utility, the proposed algorithm
presents up to 45.7% better results compared to a pre-
vious approach.

In [4], the problem of cluster head recharging by the
transmissions of the cluster members is examined. The
authors formulate a power resource allocation problem
to maximize the energy efficiency. The reverse problem
is tackled in [9]. It is assumed that the cluster heads
are equipped with solar panels and they use the solar
energy to recharge the cluster members. A cluster head
placement problem is examined which is proved to be
NP-hard.
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3 System model

We consider wireless sensor nodes powered by recharge-
able batteries. Each node spends its energy by taking
measurements utilizing its sensing module and by com-
municating with other nodes. The energy spent per bit
is described by α1 + βd2b for the transmissions and by
α2 for the reception. α1 is the energy/bit consumed by
the transmitter electronics, β accounts for the energy
dissipated in the transmit op-amp, α2 is the energy con-
sumed by the receiver electronics and b is the amplitude
loss exponent.

We, also, assume that all the nodes take measure-
ments periodically and generate the same amount of
data D. The data is encapsulated in a packet of size
p bits and it is transmitted to the sink or to a relay
node. A node can transmit k packets per time period.
A relay node is capable of aggregating multiple data in
one packet. We set k′ = dnkDp e the number of packets
transmitted per time period by a relay node, where n
is the number of communicating nodes (including the
relay node itself).

We define as network lifetime the time until at least
one node uses up its battery. Assuming that the nodes
consume energy with constant rate, the node with the
highest consumption sets an upper bound on the net-
work lifetime.

The sensor nodes are equipped with an extra RF mod-
ule capable of harvesting power from transmitted sig-
nals. A charger with omni-directional antenna is used
to send energy packets to the network and recharge the
nodes. We used the same energy harvesting model de-
scribed in [11].

We split the transmission time in rounds where each
round has two phases. During the first phase, named
“Sensing data phase”, the nodes communicate with the
sink and transmit their sensing data. In the second
phase, named “Energy data phase”, we allow the trans-
mission of energy packets. The transmission time is di-
vided in S slots and we allow only one transmission per
slot within the vicinity of a single node to avoid interfer-
ence. We assume that the nodes are well synchronized
using a precise time synchronization protocol [8]. Each
time a node is ready to transmit a packet it switches
to active mode while it remains in sleep mode if it is
not transmitting. In sleep mode a node consumes much
less energy but it can still harvest energy from the RF-
harvesting antenna.

As a consequence, the number of data transmissions
during the “Sensing data phase” determines the maxi-
mum (safe) number of energy packet transmissions. As-
suming a time period equal to one round and k packet
transmissions per round, it holds that p

dr (k(Nmax+1)+
k′ + ke) ≤ τ, where Nmax is the maximum number of
neighbors among the nodes in the network, ke is the en-
ergy packets, dr is the data rate, and τ is the duration
of the round. The higher the node density, the higher
the number of neighbors and the lower the maximum
possible transmissions of energy packets.

4 The optimal charger position-
ing problem

Finding the optimal charger position, the cluster lifetime
is maximized. As it is defined in Section 3, the network
lifetime is upper bounded by the node with the highest
energy consumption. The most distant node to the CH,
or the same the CH, set the lifetime upper bound. It
practically means that in order to extend the lifetime,
the charger must be placed somewhere that the CH gets
enough energy to survive until one node dies, and at the
same time, the most distant node (or multiple distant
nodes) lasts as long as possible.

Given a group of n nodes the Optimal Charger Po-
sitioning problem (OCP) can be formulated as follows:
find the best charger position O in the plane such that
the maximum energy consumption in the cluster is min-
imized.

If I is the node with the highest consumption, we can
distinguish two cases of the problem. First, if I is out
of the harvesting range of the charger, the number of
optimal charger positions is infinite. All these positions
are located within a disk with center the coordinates of
the CH and radius the maximum distance between the
CH and charger (denoted by dCH).

On the other hand, if I is in the harvesting range of
the charger, then the problem is transformed to a Fa-
cility Location Problem (FLP) which in its general case
is NP-hard [5]. The problem in FLP is to find facility
positions that minimize the sum of transportation costs
between those positions and a set of sites (nodes). A
simple facility location problem is the Weber problem,
in which a single facility is to be placed. In our case, as
it is explained in the next section, the Weber point co-
incides with the center of the mass, since the maximum
consumption is minimized when two or three diametri-
cally opposed nodes have the same consumption.

5 Solutions for the OCP problem

5.1 Local Search algorithm

In this section we present “Local Search” (LS), an al-
gorithm that computes the charger’s position based on
local information.

The input of LS is the CH position and the initial
position of the charger. The CH is chosen based on two
criteria; (a) to be reachable by all the nodes of the group
and (b) to be connected with the sink. Every node that
satisfies these two criteria can become the CH. In LS we
choose as CH a node which is closer to the centroid of
the plane, in order to balance the communication cost
between the nodes and the CH. Another reason is to the
centroid can be computed without much cost. In the
centralized case it is the average of the coordinates of the
nodes while in the distributed case it can be estimated
using the nodes relative position [1].

As it has been already mentioned, the CH’s consump-
tion sets an upper bound on the network lifetime if it
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does not have enough energy to forward multiple pack-
ets by the nodes of the group. It means that the charger
must not be located far away from the CH in order to
stoke it with energy. The maximum charger distance
away from the CH (i.e, dCH) can be calculated by tak-
ing into account the cluster size as well as the consump-
tion and the harvesting energy of the CH. Due to the
limited size of this paper, we omit the detailed equa-
tions. Note that the distance between the CH and the
most distant node I is, also, involved in the equations.
Hence, the optimal charger position is always found in
a disk A with radius dCH and center the coordinates of
the CH. dCH is, also, upper bounded by the maximum
harvesting range. We have narrowed down the search
space for the charger to a disk A. However, the number
of solutions in A remains infinite.

Based on the fact the harvesting energy is higher the
closer we move to a receiver, we make two observations.
First, since harvesting power depends on distance, if we
move the charger towards the most distant node I the
communication cost remains the same but the harvest-
ing energy is getting higher. It means that the closer we
move to distant nodes the total consumption is reduced.
The second observation is that moving towards a distant
node we reduce its consumption but, at the same time,
we increase the consumption of other nodes located at
the opposite direction from where we move to. However
there is an optimal point O where at least two or three
nodes present the same (maximum) consumption Cmax.
If w is the number of nodes with equal consumption,
then all w nodes are enclosed in a minimum (weighted)
circle C with center O and radius (weight) Cmax. How-
ever, it is known that a minimum enclosing circle can be
drawn by computing maximum three points (or two if
the points are on the same straight line with the center
of the circle). Therefore, O can be computed by finding
three (or two) only nodes with equal weight.

Figure 1: Example with the positions of three distant
nodes, the intermediate charger positions and the opti-
mal position on the plane.

Next, we describe how LS works in order to find a
solution close to O. Let us assume that the best solu-
tion found by LS is at point O. The algorithm works
by evaluating successive charger positions with a step of
ε, where ε is a small number. As it is shown in Figure
1 the charger which is initially located next to the CH,
is starting moving towards I which is the most distant
node and the node that presents the highest consump-
tion. At every single point the algorithm checks if the
consumption of the rest of the nodes is higher than or

equal to the consumption of I. A node that satisfies
this condition, let say at point ι, is the second point I ′

needed to define C. If multiple nodes have higher con-
sumption than I, the node with a consumption closer to
that of I is selected. We must mention here that three
subcases exist. First, if I, I ′ and CH are on the same
straight line, no other node is needed to be found since
C can be defined by two points (I and I ′). Second, if
multiple nodes exhibit the same consumption with I, it
means that all these nodes belong in C, and thus more
than three points have already been found. Third, if no
node I ′ is found, then ι is located at the intersection
point of the border of A and the straight line defined by
nodes CH and I.

At point ι the algorithm has found a solution for OCP
problem, but it may not be the optimal. For example in
Figure 1 if the charger moves right, the energy consump-
tion can be improved. The algorithm’s next objective is

to detect a third point by moving on an arc
_
ι, ι′ that

connects the intersection points of the two circles with
centers the coordinates of I and I ′, and radii I, ι and
I ′, ι, respectively. The energy consumption of I and I ′

is equal for all points on
_
ι, ι′ since in fact ιι′ is the diago-

nal of the (weighted) square ιIι′I ′ with a (weighted) side
of EIιc . The arc can be defined by points ι, ι′ and O′. O′

is the intersection point of the arc and the straight line
I, I ′. At this point I and I ′ present the same consump-
tion and I,O + O, I ′ = I, I ′. Similarly to the previous

steps, the charger is moving on the arc
_
ι, ι′ with step

ε until a third node I ′′ with higher than or equal con-
sumption to that of I and I ′ is found. Note that the
same three subcases may also exist here. Since I ′′ is
detected, the best position has been found.

It is obvious that the lower the ε the closer the solution
to the optimal point. We must note that there is no
other O defined by I, I ′, and I ′′ since O is the center of
the mass of the triangle II ′I ′′ which is unique.

Property 1 The maximum traveling distance of the
charger is less than or equal to CH, I.

We omit the proof of the previous property due to the
limited size of the paper.

The computation cost of the approach mainly depends
on the step ε and the number of nodes. Apparently the
lower the ε the more the iterations of the algorithm. If
z is the number of iterations to find O, then the longest

run of the algorithm is z(n−1)
ε . z depends on the distance

between CH and the most distant node.

In the distributed version of LS, the charger needs to
communicate with the nodes before each step ε and to
decide its movement through the nodes relative position
and RSSIs. This means that the total number of ex-
change messages is proportional to the number of nodes
and the step ε. Since 2(n − 1) messages need for each
step, the total number of messages is upper bounded by
2z(n−1)

ε .
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5.2 Brute force algorithm

In this section we describe “Brute force” (BF), a simple
exhaustive algorithm that examines a very wide range
of possible solutions. BF divides A in square bits of
equal size with a side of ε′. For every bit it assigns
a point in the middle of the square. Subsequently, it
checks every single point to find the minimum possible
maximum consumption for all the nodes in the group.

Similar to Local Search, the lower the ε′ the higher
the precision of the best solution. BF guarantees that

its best solution is
√
2ε′

2 far from the optimal and, unlike
LS, this solution does not depend on the nature of the
harvesting module. BF’s complexity depends on ε′ and
the number of nodes. Unlike Local Search, BF always

checks all the possible solutions which are equal to
πd2CH
ε′2 .

Hence, its complexity is O(
πd2CH
ε′2 n) = Ω(

πd2CH
ε′2 n).

Due to the centralized nature of the algorithm and its
high computation cost, it makes it viable only for small
networks or for comparison purposes.

6 Evaluation & discussion of the
results

We assume a scenario with a square terrain of 25 me-
ters side (fixed) and variable number of nodes randomly
and uniformly scattered on the terrain. We measure the
maximum energy consumption of the nodes (displayed
as “Consumption”) for one round and the execution time
of the algorithms. Due to the presence of random values,
we run each instance 50 times and the average results
are presented. The 95% confidence intervals are, also,
shown when it is feasible.

Regarding the node and station characteristics, we
consider the following values (see [11] for details): p =
127bytes, D = 256bits, dr = 250Kbps, k = 1 packet,
ke = 150 packets/sec, τ = 30sec, PtxGT = 3W ,
Rh = 12m (max. harvesting range), Rc = 40m (max.
communication range), GR = 6dBi, λ = 0.3279m,
σ = 0.01, ρ = 1m, α1 = 50nJ , α2 = 50nJ , β = 100pJ ,
and b = 2. We assume four transmission levels when
d < 10, 10 ≤ d < 20, 20 ≤ d < 30, and d > 30. The steps
ε and ε′ are both equal to 0.05m. Node parameters cor-
respond to Mica2 sensor nodes using a Zigbee communi-
cation module at 915MHz. Regarding the transmitting
station and the harvesting efficiency we used the values
provided by Powercast corporation for P2110B model
operating at the same frequency. k, ke and node densi-
ties are chosen in that way so that no interference exists.
The experiments were carried out on an Intel i7 2.5GHz
CPU with 16GB RAM running Linux.

Figure 2 illustrates the range of solutions provided by
BF and the best solution found by LS for a scenario
with 20 nodes. The left figure pictures disk A centered
at CH whereas the color represents the maximum con-
sumption. The tiny squares stand for the position of
the nodes. We can observe that the best solutions are
gathered in an eye-shaped area while the consumption
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Figure 2: The range of solutions provided by BF and the
best solution found by LS for a scenario with 20 nodes.

gradually increases as we move away from it. On the
right figure, the solution found by LS is depicted. The
tiny squares represent the nodes and the best solution
is drawn with a slightly bigger square. We can see that
the solution is on the arc which connects the two circles
(arcs here) centered at I and I ′ respectively. Here, no
node I ′′ was found, so the best solution is also located
on the line which connects the I and I ′.
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Figure 3: Maximum energy consumption (left) & exe-
cution time (right) for variable node populations.

Finally, the results of the comparison between LS, BF
and “Centroid” are figured in Figure 3. “Centroid” rep-
resents the centroid of the cluster and it is the solution
with the minimum computation cost. Its performance is
20-40% lower to that of BF and LS which exhibit similar
results in terms of consumption. However, the compu-
tation cost of BF is 100 to 1000 times higher than that
of LS.

7 Conclusion & Future work

In this paper, we introduced the problem of the optimal
charger placement in RF-energy harvesting networks or-
ganized in clusters. We proposed both localized and a
centralized algorithms with good approximation to the
optimal. Simulation results showed that the centralized
algorithm exhibits a slightly better performance in terms
of energy consumption but it presents high computation
cost. In the future, we plan to investigate the problem
of finding the optimal number of chargers so that budget
and network lifetime requirements are met.
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