
1

ActLoRa: Supporting Actuators in LoRaWAN
Dimitrios Zorbas

Nazarbayev University, School of Engineering & Digital Sciences, Nur-Sultan, Kazakhstan
Author’s email: dimzorbas@ieee.org

Abstract—This paper examines the problem of supporting
actuators in a LoRaWAN network. It proposes a novel au-
tonomous mechanism to allow one-to-one and one-to-many direct
communication between different nodes of the same network for
actuating purposes. The proposed scheme, called ActLoRa, uses
a synchronized subnetwork which coexists with LoRaWAN while
the end-devices can still register to the same network following
the typical over-the-air activation process consisting of a join-
request and a join-accept message. ActLoRa is evaluated using
simulations and testbed experiments. The simulation results show
that the performance of the synchronized part of the network is
not considerably affected even when the Aloha-part consists of
many nodes. The experiments are used to show the feasibility of
the approach through the development of a proof-of-concept.

I. INTRODUCTION

Low Power Wide Area Network (LPWAN) protocols have
been recently proposed to support applications that require
long range transmissions combined with low energy cost.
LoRaWAN is one of the top LPWAN protocols currently
used in many different application domains such as in smart
agriculture, in smart cities, and in industrial automation [1].
LoRaWAN relies on the LoRa physical layer, a proprietary
Chirp Spread Spectrum (CSS) radio technology. LoRa can
achieve transmission ranges of several kilometers with Line-
of-Sight (LoS) while it presents remarkable resilience against
interference, fading, and Doppler effects.

LoRaWAN creates a star-of-stars topology where end-
devices can reach one or more gateways with a single hop,
while each gateway is connected with a back-end – usually
cloud-based – network consisting of base stations that provide
services to the end-devices through the gateways. The end-
devices’ job is to periodically report data related to their vicin-
ity. Alternatively, the end-devices are triggered by events that
may happen in their vicinity. The majority of LoRaWAN nodes
communicate with the gateway(s) by transmitting packets
using a number of uplink radio channels. Downlink communi-
cation is used only for data acknowledgements and commands
related to the functionality of the network.

Apart from the lack of downlink communication between
the gateways and the end-devices, LoRaWAN lacks of a
mechanism that will allow nodes of the network to directly
communicate with each other. This type of communication
is very desirable in applications where actuation is required.
An example of such an application is the following: a node
(instigator) detects a fire in a building and transmits a packet to
one or more nodes (actuators) that control fire extinguishers,
evacuation door switches, and fire alarms. With the current
LoRaWAN technology, this scenario is not feasible unless

the actuators are connected to a separate non-LoRaWAN
network (e.g., Zigbee or a wired network). However, this
implies additional costs and eventually extra delays because
the instigator’s packet needs first to be forwarded through
the LoRaWAN network to the cloud server, and then from
the cloud server to another network server which controls the
actuators, and from there to finally reach the actuator devices.

To solve the aforementioned issue, this paper proposes
ActLoRa. In ActLoRa, an instigator can directly communicate
with one or more actuators of the same LoRaWAN network
without the intervention of a gateway or a separate network.
The approach works with the minimum possible pieces of
information. The network administrator just needs to set up
the node dependencies (i.e., groups of nodes that participate
in the actuation) on the network server and, optionally, a key
for data encryption on the nodes. The rest of the information
such as how the nodes are synchronized, at what time they
communicate, and how acknowledgments are sent between
nodes of each actuating group, is done through the ActLoRa
autonomous mechanisms.

ActLoRa bases its operation on TS-LoRa [2], a time-
slotted protocol for industrial IoT applications. The time is
divided in repeated frames consisting of slots, while each
slot accommodates a unique data transmission or acknowl-
edgment. The nodes periodically wake-up to synchronize with
the network through the broadcast of gateway beacons. The
synchronized nodes that are used for the actuation may co-
exist with typical LoRaWAN Class A nodes (see Section
III). Section IV presents details of how this scheme works
focusing on ActLoRa autonomous slot generation mechanism.
The approach is evaluated using simulations and experiments;
assessment results are presented in Section V. Section VI
concludes the paper and presents plans for future work.

II. RELATED RESEARCH

Due to the very high number of publications related to
LoRa/LoRaWAN, this section is limited to works that are
closely related to the proposed solution. For a more exhausted
literature review, the reader may refer to recent surveys [3, 4].

Machine-to-Machine (M2M) communications is required
by many IoT applications especially those with strict delay
constraints. Sensor actuation is a primitive M2M concept
introduced in the literature more than a decade ago [5],
however none of the existing LPWAN protocols support it.
Multi-hop industrial IoT protocols such as the 6TiSCH and
the WirelessHART are the only solutions that can currently
be used for this purpose, however, in the LoRa context (e.g.,

2

[6, 7]) they usually suffer from high overhead [8] and they
cannot run over LoRaWAN.

On the other hand, time-division and network synchroniza-
tion are two concepts that have been recently adopted by
many approaches in the literature with the aim of increasing
the network reliability. Most of them rely on a slotted-Aloha
scheme where the nodes randomly select a timeslot to transmit
their data [9, 10]. Some other approaches propose collision-
free and low-overhead designs to increase the efficiency for a
known number of end-devices [2, 11]. This is done by schedul-
ing the transmissions in slots. Approaches that combine time-
division with carrier sensing mechanisms are also presented
[12]. Finally, time-division without the requirement of time-
synchronization is proposed by Finnegan et al. [13] to double
the number of reporting nodes for a single gateway.

Even though these approaches come up with solutions for
building more reliable LoRaWAN networks, they are not
designed to support actuating nodes. The main drawback
is that no mechanism to allow several nodes to wake-up
simultaneously, exchange packets with each other and send
acknowledgments is provided.

III. PRELIMINARIES

This section briefly presents the main features and func-
tionalities of LoRa and LoRaWAN that are necessary for non-
experts to understand the main concepts of this work.

A. LoRa & LoRaWAN

In LoRa all the available channel bandwidth is used while
the chirps are spread diagonally during the transmission. The
amount of spread to use is decided by a parameter called
Spreading Factor (SF) which typically ranges from 6 to 12
(even though SF6 is not practically used). The higher the
SF, the longer the transmission time and, thus, the energy
consumption. However, a longer range can be achieved with
higher SFs. At the physical layer, a LoRa packet consists of a
preamble followed by the payload.

The LoRaWAN protocol [14] sits on top of LoRa at
the MAC and link layers and it also provides end-to-end
encryption, back-end connectivity, and an adaptive settings
management technique, called ADR, which allows the nodes
to use the least energy consuming settings. In contrast with the
LoRa physical layer, LoRaWAN is open source. Three classes
of nodes exist; Class A, Class B, and Class C. Each class has
its own features and use cases, but class A is the dominant one.
All LoRaWAN devices support bi-directional communication,
however, the main differences between classes are the down-
link communication time window and the energy consumption.
In Class A, uplink communications can be initiated at any
time by the end-device, followed by two receive windows.
Class B devices open downlink communication periodically
and synchronized, while Class C devices open the downlink
communication channel continuously, and thus, they require a
non-intermittent power supply.

Sub-GHz LoRa-enabled commercial devices are obliged to
follow strict radio duty cycle regulations imposed by local

spectrum authorities. For example, in the EU, the spectrum
is divided in bands and each band has a number of channels
that are used for communication. Most of the bands have a
total duty cycle of 1% per hour which allows the nodes to
transmit up to 36 seconds within an hour. Another band which
is usually used for downlink communication has an up to 10%
duty cycle.

B. Security in LoRaWAN in a Nutshell

All end-devices need to be activated (register) to become
part of a LoRaWAN network. The protocol allows two ways
to achieve that; the Activation-By-Personalization (ABP) and
the Over-The-Air-Activation (OTAA) methods.

In the first case, a network administrator needs to store an
application Session Key (AppSKey) and a network session
key (NwkSKey) in a non-volatile memory of the devices.
Both keys are unique per device and are used for encryption
and authentication, respectively. Apart from these two keys, a
unique device address (DevAddr) is assigned to each node
which is used to identify each node in the network. DevAddr
is a concatenation of a 7-bit address prefix (AddrPrefix –
the same for all the nodes in the network) and a 25-bit arbitrary
generated number.

In the second case, the generation of DevAddr and of the
two aforementioned keys is done “over-the-air”. Each node
that wants to join a network sends a join-request message
consisting of its DevEUI (unique device identifier) and a net-
work join identifier (JoinEUI) which identifies the network
server and it is known to all nodes. Join-request messages
are sent unencrypted but are followed by a message integrity
check (MIC) signed with a unique (per node) application key
(AppKey) which is stored in a non-volatile memory along
with some other information used to avoid replay attacks. The
back-end servers (through a gateway) reply with a join-accept
message if the node is allowed to participate in the network
(i.e., if JoinEUI and MIC are correct). The join-accept
message contains the DevAddr of the node, the network ID,
and some other fields related to the functionality of the network
and to the replay attack avoidance. Join-accept messages
are encrypted with the node’s AppKey. Once the node gets
the join-accept message, it can generate both AppSKey and
NwkSKey autonomously. The back-end servers do the same
process so both ends generate the same keys. The keys are
valid for the duration of the session.

IV. ENABLING ACTUATION IN LORA NETWORKS

Two conditions need to be met in order to support actu-
ators in a LoRa network. First, two or more nodes need to
agree on the exact time that they shall turn their radio on
to transmit or receive the actuating data. Second, all these
nodes must retain the same key material for their in-group
communications. These two conditions are described in the
following subsections.

A. Time Synchronization & Frame Structure

In order to simultaneously turn on their radio to transmit or
receive data, the nodes first need to be synchronized with the

3

S1 S1ACK1

Frame

guard times

Beacon. . .

timeslot

S1 ACK1

Fig. 1. An example of the ActLoRa frame structure for two synchronized
nodes, namely one instigator and one actuator.

network. This can be done either over the LoRaWAN Class-
B beacon broadcast mechanism or over another application
layer mechanism as the one implemented in [2]. If we assume
that the actuation is done over a LoRaWAN network, only the
group of nodes who participate in the actuation are required
to be synchronized in order to transmit or receive data. The
rest of the nodes can follow the default Aloha-based approach
of LoRaWAN.

As it is illustrated in Fig. 1, the time between two successive
beacons is divided in equally sized slots. Each slot accommo-
dates the transmission of one node, while empty time space
is added before and after the expected transmission time to
tolerate clock drifts (guard times).

B. Wake-up Time

The process of computing the exact wake up time of the
nodes is partially based on the autonomous slot assignment of
TS-LoRa, however, the same process in ActLoRa is much more
sophisticated. ActLoRa allows all the nodes of an actuating
group (an instigator and a number of actuators) to wake up
at a specific timeslot to transmit or receive data. A number
of slots is reserved after this timeslot which the actuators can
use to send acknowledgments. The process does not require
any specific knowledge of the group participants, other than
their DevEUIs. Algorithm 1 presents the pseudocode of the
approach while the following paragraphs describe each step of
the approach in detail.

Algorithm 1: Instigator’s DevAddr generation.
input: slot, S, K, DevAddri∀ i ∈ K

1 k ← |K|;
2 if k mod 2 = 0 then k ← k + 1 ;
3 DevAddr ← NULL;
4 while DevAddr = NULL do
5 generate a random DevAddr (repeat if already

generated);
6 if int(hash(DevAddr)) mod S = slot then
7 forall i ∈ K do
8 DevAddri ← XOR(DevAddr,

DevEUIi[32..63]);
9 ACKsli ← slot + 1 + DevAddri mod k;

10 if ∃ (i, j) ∈ K, i ̸= j : ACKsli = ACKslj then
11 DevAddr ← NULL;

12 else
13 DevAddr ← NULL;

14 return DevAddr;

As it was mentioned in Section III-B, during the over-
the-air node activation, the network server replies to a join

request with a join-accept message which among other fields
it contains a unique 32-bit address of the joining devices in the
network (i.e., DevAddr). The default LoRaWAN computes a
large part of DevAddr at random. On the contrary, at the
first step, ActLoRa pseudo-randomly generates a DevAddr
for each instigator using the following formula:

DevAddr = hex(AddrPrefix|bin(k)|rand(25)), (1)

where AddrPrefix is a 4-bit network address prefix, k is
the number of actuators in the group (3 bits), and rand(·) is a
function which randomly generates · bit numbers.

The generated DevAddr must first satisfy the following
condition:

slot = int[hash(DevAddr)] % S, (2)

where slot is the desired slot number, hash() is an one-way
hash function, and S is a fixed big integer which represents
the maximum acceptable frame size in slots. The joining
instigator can derive the same slot number by repeating Eq.
(2) once it gets the join-accept packet. It must be noted
that the instigator’s DevAddr must satisfy some additional
requirements which are explained in the following subsections.

In ActLoRa, all participants of an actuating group need
to wake-up at the same slot. To do so, all k nodes need to
receive either the same DevAddr with the instigator or k
different DevAddrs all of them pointing to the same slot.
The first option is not possible because the device addresses
in LoRaWAN are unique. The second option needs a lot
of investigation because, even though it is easy to generate
multiple DevAddrs which in turn deduce the same slot [2],
for reasons explained in Section IV-C the actuators need to
be aware of the instigator’s DevAddr. An additional reason
is that a DevAddr is used in both the header of any data
packet and in the Message Integrity Code (MIC) which assures
message authentication. Thus, the question is how the network
server can generate DevAddrs for the actuators that somehow
“include” the DevAddr of the instigator and, at the same time,
all of them point to the same slot.

ActLoRa answers the aforementioned question by allowing
the network server to blend DevAddrs that are based on
the DevAddr of the instigator with the unique identifier
(DevEUI) of each actuator. The following formula is used
for this purpose for all i in K:

DevAddri = XOR(DevAddr,DevEUIi[32..63]). (3)

In fact, the network server calculates an exclusive OR of the
instigator’s DevAddr and the 32 least significant bits of the
receiver’s identifier. The least significant bits are used (and not
the most significant ones) because the first 24 bits are the same
for devices of the same manufacturer (OUI-defined bits). Thus,
the probability of having two or more devices with the same
32 most significant bits is quite high. On the contrary, it is
impossible to have devices with the same 32 least significant
bits in the same network. That practically means that every
DevAddri of Eq. (3) is also unique. Each actuator i can use
DevAddri to derive the DevAddr of the instigator and, then,
generate the same unique slot using Eq. (2). This can be done
by simply executing the reverse operation:

4

DevAddr = XOR(DevAddri,DevEUIi[32..63]). (4)

At this point, all group participants have joined the network
and have received a unique DevAddr. All of them can
generate the same slot using inexpensive bit operations.

C. Data Transmission

Once the nodes register to the network, they know their slot
and they have their own AppSKeys. They also periodically
wake up to receive a beacon from a gateway and adjust
their clocks accordingly. The data transmission happens at the
slot-th slot as it is derived by Eq. (4). The instigators turn on
their radio in transmitting mode while actuators turn on their
radio in receiving mode during that timeslot. Both sides have
to use the same SF and the same radio channel from the list of
the channels received during the registration (this is contained
in join-accept packet). A frequency hopping mechanism can
be applied to avoid jammed or constantly busy channels. Such
mechanisms are out of the scope of this paper. Since the
actuators cannot be aware if the instigator will transmit or
not a packet in every round, they have to wake-up and turn on
their radio for some short time until they go back to sleep.

Every actuator that receives a packet from the instigator
needs to report its reception in one of the subsequent slots. The
number of subsequent slots dedicated for acknowledgements
depends on the size of the actuating group. A new question
that rises is how the actuators know at what timeslot the
acknowledgment will be sent. ActLoRa solves this issue by
allowing each actuator to compute its unique acknowledgment
slot (ACKsl) as follows:

ACKsli =

{
slot+1+DevAddri%k if k%2=1,
slot+1+DevAddri%(k+1)if k%2=0,

(5)

where slot is given by Eq. (2) and k = |K|. The second
part of the addition with the modulo operation must generate
a unique number in the range [0, k − 1] for all k actuators.
The modulo divisor must always be an odd number in order
to assure that any combination of dividends and divisors will
lead to either an odd or an even slot number (otherwise there
is a high risk of infinite loop when two different DevAddrs
constantly generate the same slot).

Since DevAddri is strongly connected with the instigator’s
DevAddr (through Eq.(4), the latter must satisfy Eq. (5) for
all actuators in K during its generation in Eq. (2). Since |K|
is a 3-bit number, the instigator’s along with the actuators’
DevAddrs can easily be generated in a short time as it is
depicted in Fig. 2. In this figure, it is assumed that all nodes in
the network are either instigators or actuators. Each instigator
has 5 actuators. This scenario is most likely unrealistic because
in real applications most of the nodes just report data and do
not actuate. However, this scenario is computationally much
harder than having a high number of reporting nodes. The
longest instigator-actuators tuple generation that was recorded
took not more than 0.25 sec on an Intel i7 at 2.66GHz machine.

Each actuating group reserves |K| + 1 or |K| + 2 slots in
the frame structure. The slots are given to the nodes serially
as long as they register to the network. The first slot of each

 0.001

 0.01

 0.1

 1

 200 400 600 800 1000Ex
ec

u
ti

o
n

 ti
m

e
(s

ec
)

Actuators (K)

Avg Max

Fig. 2. Average and maximum execution time per instigator-actuators tuple.
Each tuple consists of 1+5 DevAddrs. Thus, it is assumed that 20% of the
slots are occupied by instigators and 80% by actuators.

group is given to the instigator. Since k is a 3-bit number,
up to 8 actuators per instigator are supported. The model can
support more actuators if one more bit is given for k in Eq. (1)
and assuming that not more than 23 LoRaWAN networks exist
in the same area all of them having a different AddrPrefix.

It must be noted that if the application does not require
acknowledgments or if only one actuator exists in the group,
ActLoRa can be simplified by eliminating Eq. (5). In that
case, the DevEUIs of the nodes are not required to be known
in advance. Moreover, it is not necessary the instigator to
register before the actuators because the DevAddrs can be
pre-computed for a given (non-serial this time) range of slots.

D. Encryption Key Material

As it is described in Section III-B, each node of the network
has in its possession an encryption key (AppSKey) which
is used for its one-to-one communication with the gateway
(uplink or downlink). Since this key is unique for each node,
the nodes in the actuating group cannot communicate with
each other. It must be noted that LoRaWAN does not provide
any group-key distribution or generation mechanism (not even
for beacon-based Class-B devices). It is mentioned that this
has to be done either during the device personalization (ABP)
or through the application layer.

ActLoRa uses different keys than the default session keys
for the in-group communication. Since the nodes do not have
enough common information to construct such a key, all the
nodes in the group must store a 128-bit randomly generated
actuating key in a non-volatile memory similarly to LoRaWAN
Class-B nodes. It must be noted that all key and device address
generation process can be bypassed if the ABP activation is
used. In that case, the actuating keys are stored in the same
secure way AppSKeys are stored on each device.

V. EVALUATION & DISCUSSION OF THE RESULTS

ActLoRa was evaluated using simulations and testbed exper-
iments. On one hand, the purpose of the simulations was to as-
sess the proposed solution in coexistence of many LoRaWAN
nodes and, thus, measure its performance when there is a high
probability of collision between packets of the synchronized
part and packets of the Aloha-based part of the network. On
the other hand, the purpose of the experiments was to test
the implementation feasibility of the approach through the
development of a proof-of-concept.

5

TABLE I
SIMULATION PARAMETERS

Parameter Value
Nodes 100 – 1000
Gateways 2 (Aloha) + 1 (Synchronized)
Terrain size 1000x1000 m
Nodes & Gateways positions Random
Spreading Factors (Aloha) 7 – 12
Spreading Factor (Sync.) 9
Channel bandwidth (BW) 125 KHz
Preamble Symbols 8
Coding Rate 4/5
Receive window 1&2 SF 7–12 & 9
Uplink/Downlink channels 8 / 8+1 or 3 / 3+1
Payload size 16 Bytes
Path Loss model (see [2]) Lpl(d0) = 107dBm, d0 = 40m,

γ = 2.08, σ = 3.57
Frame size 128 sec, S=1001
Guard time 25ms
Receiver Sensitivities Typical Semtech SX1276
Max Tx power & consumption 14 dBm, 75 mA [2]
Rx consumption 45 mA [2]
Aloha packet rate 1 pkt per 5 min
Synchronized packet rate 1 pkt per 128 sec
Retransmissions to drop 8

 0
 0.2
 0.4
 0.6
 0.8

 1

 200 400 600 800 1000Pa
ck

et
 s

u
cc

es
s

ra
te

Nodes

Aloha
Synchronized

 0

 30

 60

 90

 120

 200 400 600 800 1000

En
er

gy
 c

o
n

s.
 (

m
J)

Nodes

Aloha
Synchronized

Fig. 3. Packet success rate (left) and energy consumption (right) for a scenario
with variable number of nodes, 2 gateways, and 8 uplink radio channels.

A. Simulations

LoRaWAN-SIM1 [15] was used for the needs of the sim-
ulations using variable number of nodes. The network is
divided in two parts; the Aloha part and the synchronized
part. The majority of the nodes belong to the first category.
The nodes of this category send out data with a fixed rate at
a random radio channel. Scenarios with 8 and 3 uplink radio
channels are examined. An acknowledgment is expected to be
received in one of the received windows given the gateways
availability. Regarding the synchronized network, the number
of instigators is set to 10 and each instigator can have up
to 5 actuators. So the maximum number of nodes reserved for
actuating is 60. All these nodes communicate through the same
(single) radio channel (the first of the 3 or 8 available). The
guard times, the clock drift, and the power consumption have
been decided experimentally [2]. All the simulation parameters
are summarized in Table I. The illustrated results represent
averaged values of 50 runs per node instance with different
random node and gateway positions. The average SF of the
Class-A nodes (after ADR) is just over 9. The imperfect SF
orthogonality as well as the capture effect were also taken into
account. The 95% confidence intervals are shown in all figures.

1https://github.com/deltazita/LoRaWAN-SIM

 0
 0.2
 0.4
 0.6
 0.8

 1

 200 400 600 800 1000Pa
ck

et
 s

u
cc

es
s

ra
te

Nodes

Aloha
Synchronized

 0

 30

 60

 90

 120

 200 400 600 800 1000

En
er

gy
 c

o
n

s.
 (

m
J)

Nodes

Aloha
Synchronized

Fig. 4. Packet success rate (left) and energy consumption (right) for a scenario
with variable number of nodes, 2 gateways, and 3 uplink radio channels.

The simulation results illustrated in Fig. 3 reveal a low im-
pact of the Aloha-based network on the synchronized network
performance. Even when the number of nodes gets high due to
retransmissions (because the gateways cannot handle that high
traffic volume), the packet success rate of the synchronized
network does not fall bellow 82%. On one hand, this can
be explained by the higher data rate of instigators which
is roughly double than that of the monitoring nodes. On
the other hand, two other reasons are the high number of
channels and the (on average) higher transmission power of
instigators and actuators since no ADR is performed on the
synchronized network. Both reasons reduce the probability
of collisions. This can also be confirmed by the results of
Fig. 4 where only 3 radio channels are used. The reduced
number of radio channels negatively impacts the delivery rate
of the synchronized network, however, the performance is still
acceptable even with very high node populations.

For low node populations, the energy consumption of the
synchronized nodes is higher than that of the Aloha network
due to the periodic synchronization and the on average higher
transmission power. Nevertheless, since most of the energy
expenditure comes from the synchronization, the energy con-
sumption is not affected much by the retransmissions. The
energy consumption of the Aloha network increases substan-
tially when many nodes are deployed due to the high number
of retransmissions.

B. Experiments

ActLoRa was implemented on Pycom Lopy4 devices as an
extension of TS-LoRa testbed2. One instigator and two actua-
tors were used along with appropriate back-end infrastructure
such as a gateway for data reception and beacon transmission,
a gateway for join requests, and a Raspberry Pi 4 serving as
the network server. The deployment took place in a residential
building and the devices were placed indoors. The gateway
location was fixed while three different locations were used
for the end-nodes with different distances from the gateways;
short (RSSI ≥–70dBm), medium (RSSI –80 to –90dBm), and
long distance (RSSI ≤–90dBm) through walls without LoS.
The experiments lasted for several hours and were repeated
over different days. The parameters of the experiments are
presented in Table II.

The experimental results showed that a server response to a
join-request message takes on average 27.7ms which mainly
accounts for the generation time of the instigator-actuators
tuple. Regarding the packet success rate, the results of Fig.

2https://github.com/deltazita/ActLoRa

6

TABLE II
EXPERIMENTAL PARAMETERS

Parameter Value
Nodes 3
Channel Bandwidth 125 kHz
Preamble Symbols 8
Coding Rate 4/5
Spreading Factor (Data) 9
Frequency EU868 (1% duty cycle)
Data packet size 16 Bytes
ACK/Beacon packet size 4 Bytes
Guard time 15 ms
Tx power 14 dBm
Packet rate 1 pkt per 18.5sec
Max network size (S) 1001
Data encryption / Hash function AES-128 / SHA-256

 0.9

 0.92

 0.94

 0.96

 0.98

 1

short
medium

long

Pa
ck

et
 S

u
cc

es
s

R
at

e

Fig. 5. Experimental results for a scenario with 1 instigator and 2 actuators.

5 reveal a high reliability even when the distance between
the instigator and the actuators is long. In fact, most of the
retransmissions occurred due to the channel path-loss and
almost zero packets were finally dropped.

VI. CONCLUSION & FUTURE WORK

In this work, the feasibility of extending LoRaWAN in order
to support M2M communications was examined. The proposed
approach, called ActLoRa, implements a synchronized sub-
network which can coexist with the other LoRaWAN nodes.
ActLoRa is capable of supporting direct communication be-
tween one transmitter (instigator) and one or several actuators
without prior knowledge of the network but just following a
typical over-the-air LoRaWAN activation. Simulation results
showed a low impact of the Aloha part of the network on
the synchronized one. Experiments confirmed the feasibility
of the approach. In the future, ActLoRa will be evaluated
experimentally using a higher number of nodes and under
different deployment scenarios. A channel-hopping mechanism
will also be exploited and be assessed under jamming attacks.

REFERENCES

[1] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoe-
beke, “A survey of LoRaWAN for IoT: From technology
to application,” Sensors, vol. 18, no. 11, p. 3995, 2018.

[2] D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and
D. Pesch, “TS-LoRa: Time-slotted LoRaWAN for the In-
dustrial Internet of Things,” Computer Communications,
vol. 153, pp. 1 – 10, Mar. 2020.

[3] P. Gkotsiopoulos, D. Zorbas, and C. Douligeris, “Perfor-
mance Determinants in LoRa Networks: A Literature Re-
view,” IEEE Communications Surveys Tutorials, vol. 23,
no. 3, pp. 1721–1758, 2021.

[4] A. Raychowdhury and A. Pramanik, “Survey on LoRa
Technology: Solution for Internet of Things,” Advances in
Intelligent Systems and Computing, vol. 1148, no. Ibica,
pp. 259–271, 2020.

[5] M. A. Demetriou, “Guidance of mobile actuator-plus-
sensor networks for improved control and estimation of
distributed parameter systems,” IEEE Transactions on
Automatic Control, vol. 55, no. 7, pp. 1570–1584, 2010.

[6] M. Bezunartea, R. Van Glabbeek, A. Braeken,
J. Tiberghien, and K. Steenhaut, “Towards Energy
Efficient LoRa Multihop Networks,” in 2019 IEEE
International Symposium on Local and Metropolitan
Area Networks (LANMAN), pp. 1–3, IEEE, 2019.

[7] M. Haubro, C. Orfanidis, G. Oikonomou, and X. Fafoutis,
“TSCH-over-LoRA: Long Range and Reliable IPv6
Multi-hop Networks for the Internet of Things,” Internet
Technology Letters, 2020.

[8] D. Zorbas and X. Fafoutis, “Time-slotted lora networks:
Design considerations, implementations, and perspec-
tives,” IEEE Internet of Things Magazine, vol. 4, no. 1,
pp. 84–89, 2021.

[9] T. Polonelli, D. Brunelli, A. Marzocchi, and L. Benini,
“Slotted ALOHA on LoRaWAN-Design, Analysis, and
Deployment,” Sensors, vol. 19, no. 4, p. 838, 2019.

[10] L. Chasserat, N. Accettura, and P. Berthou, “Short:
Achieving Energy Efficiency in dense LoRaWANs
through TDMA,” in IEEE International Symposium On
a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2020.

[11] K. Q. Abdelfadeel, D. Zorbas, V. Cionca, and D. Pesch,
“FREE–Fine-Grained Scheduling for Reliable and
Energy-Efficient Data Collection in LoRaWAN,” IEEE
Internet of Things Journal, vol. 7, pp. 669–683, Jan.
2020.

[12] A. Triantafyllou, P. Sarigiannidis, T. Lagkas, I. D.
Moscholios, and A. Sarigiannidis, “Leveraging fairness
in LoRaWAN: A novel scheduling scheme for collision
avoidance,” Computer Networks, vol. 186, p. 107735,
2021.

[13] J. Finnegan, R. Farrell, and S. Brown, “Lightweight
Timeslot Scheduling Through Periodicity Detection for
Increased Scalability of LoRaWAN,” in 2020 IEEE 21st
International Symposium on ”A World of Wireless, Mo-
bile and Multimedia Networks” (WoWMoM), pp. 8–15,
2020.

[14] LoRa Alliance Technical Committee, “LoRaWAN™
1.0.4 Specification.” https://lora-alliance.org/resource
hub/lorawan-104-specification-package, Oct 2020. On-
line; accessed 10-Nov-2021.

[15] D. Zorbas, C. Caillouet, K. Abdelfadeel Hassan, and
D. Pesch, “Optimal Data Collection Time in LoRa Net-
works—A Time-Slotted Approach,” Sensors, vol. 21,
no. 4, 2021.

https://lora-alliance.org/resource_hub/lorawan-104-specification-package
https://lora-alliance.org/resource_hub/lorawan-104-specification-package

	Introduction
	Related Research
	Preliminaries
	LoRa & LoRaWAN
	Security in LoRaWAN in a Nutshell

	Enabling Actuation in LoRa Networks
	Time Synchronization & Frame Structure
	Wake-up Time
	Data Transmission
	Encryption Key Material

	Evaluation & Discussion of the results
	Simulations
	Experiments

	Conclusion & Future Work

