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Abstract

Smart monitoring systems in orchards can automate agriculture monitoring processes and provide useful information
about the presence of insects, such as the Brown Marmorated Stink Bug (BMSB), that threaten the production quantity
and quality of fruit such as pears. Unlike other approaches in the literature, we propose a low-cost image monitoring
system which exhibits a very low power consumption without compromising much of the accuracy that existing expensive
systems incorporating significant computing and processing capability can achieve in such applications. The proposed
system relies on a microcontroller unit and a camera which can take pictures of a double-sided sticky insect trap which,
with the help of novel machine learning algorithms, can report on the presence of BMSB via a long-range communication
link. The Internet of Things data capture and analysis system has recently been deployed in a real orchard in Italy which
is subject to BMSB infestation and the first images have been analyzed. This paper presents how the system works,
the image processing, detection and classification algorithms, as well as a demonstration of the memory and energy
consumption associated with the processing algorithms. The system achieves an accuracy of over 90% with multiple
times less memory and energy consumption compared to other similar approaches in the literature.
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1. Introduction

Based on forecasts by the United Nations Food and
Agriculture Organization (FAO), up to 40% of global crop
production is estimated to be lost to pests annually. Over
$220 billion in economic losses are attributed to plant dis-5

eases, and at least $70 billion of these losses are attributed
to the impact of invasive insects every year1. As such,
based on the FAO estimation, invasive insects have a re-
markable impact on the economy and threaten food secu-
rity for millions of people. Moreover, the situation is ex-10

pected to worsen as invasive species spread into countries
where certain pests were absent previously. Events such
as climate change, globalization and global trade will con-
tribute to this spread as environmental conditions change
around the world [1].15

The Brown Marmorated Stink Bug (BMSB) or Haly-
omorpha halys (see Figure 1) is one example of an invasive
insect. This insect pest is native to East Asia and can be
found in China, Japan, Korea, and Taiwan. It is a highly
polyphagous pest. Fruit trees, vegetables, and ornamen-20

tal plants are among the plants that BMSB feed on [2].
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1https://www.fao.org/news/story/en/item/1402920/icode/

It caused a damage of €588 million to fruit production
in 2019 in northern Italy [3]. Several factors make the
control of BMSB difficult, such as their high reproduction
rate, mobility, tendency to feed on multiple types of plants,25

and the inefficacy of general insecticides against them [4].
Due to its high invasion and high production loss that it
causes, this insect was selected as a research focus within
the EU-funded research project named, HALY.ID, which
aims to develop innovative technologies to monitor insects,30

specifically BMSB, in orchards in Europe where it is now
present.

Generally, pesticides are used by growers to control
the insect pest in their orchards, but they have adverse
effects on human health and the environment [5]. The im-35

plementation of an integrated Pest Management strategy
(IPM) aims to address the impact of invasive insect pests
on crops in a human- and eco-friendly and sustainable way.
This strategy suggests using multiple techniques to control
pests including cultural, mechanical/physical, biological,40

and chemical control [6]. By implementing IPM, pesticide
applications can be reduced significantly without affecting
yield quality or quantity [5]. Monitoring is an important
part of IPM strategies that specify the timing of insecticide
applications, identification of pest species, and informa-45

tion on the size of the insect population. The monitoring
data helps growers to take an informed decision such as
to the correct insect control strategy to use and choose
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Figure 1: The Brown Marmorated Stink Bug or Halyomorpha halys
on a pear fruit (Source: HALY.ID3).

the best possible controlling method accordingly [4]. In
traditional insect pest monitoring, farmers must periodi-50

cally visit their farms and visually analyse and count insect
species manually. This can be problematic for large-scale
orchards due to the amount of time, effort, and manpower
cost it requires [7]. In addition, sometimes visually iden-
tifying insect species with the human eye can be difficult55

because of their high visual similarity [8]. These factors
can increase the error in the establishment of the esti-
mated insect population and lead to incorrect use of pes-
ticides. Therefore, devoting significant time and resources
to this procedure may not always result in accurate re-60

sults. Automation of the identification and counting task
would make this estimation more accurate and more ef-
ficient. The automation of insect monitoring has widely
been studied in recent years, using image processing and
machine vision [9]. Such systems employ camera sensors in65

orchards capable of taking images of crops or plants. The
generated images are then analysed for insect detection
and classification.

However, there are several parameters in the develop-
ment of automation processes that should be considered70

during the design of such a system as listed below:

• Power consumption: Orchards generally have no power
lines, hence the monitoring system should be low-
power and last for extended periods without the need
for battery maintenance.75

• Accuracy: The system should be accurate enough
so that farmers can trust its information and make
appropriate decisions accordingly.

• Cost of purchase and maintenance: The cost of such
a system should be as low as possible. If such a sys-80

tem has a high cost, farmers are not likely to use it
since many of them should most likely be required
to be deployed in orchards. Moreover, the mainte-
nance cost should also be as low as possible by using
commercially available consumables (e.g., traps).85

3https://www.haly-id.eu/

• Ease of deployment and maintenance: The system
must not require any prior knowledge of electronics
or information technology processes for the farmers.

• Communication of the results: There may be a lack
of reliable internet connectivity and communication90

infrastructure since orchards are outside of cities in
remote areas.

To this extent, the study described in this publication
tackles the limitations of pest monitoring systems and in
particular energy consumption and cost. The main contri-95

butions of this study are summarized as follows:

• A low-power consumption and low-cost vision based
smart insect monitoring system to detect and count
insects in orchards, specifically the BrownMarmorated
Stink Bug, is proposed.100

• A light-weight and low-power deep-learning (DL) model
for image classification to be implemented on resource-
constrained microcontrollers (MCU) with a memory
capacity in the range of kilobytes (KB) is proposed,
evaluated, and compared to other solutions in the105

literature.

• A power characterization of the proposed system is
performed to confirm its low-power operation and
the power efficiency of the proposed ML approach.

2. Related Work110

Camera-based insect monitoring systems use a camera
to capture images and a processor for analysis to identify
and count the relevant insect population. In recent years,
several studies employ a local system (i.e., edge devices)
or a system running on the cloud for image analysis. For115

example, Guo et al. [10] proposed an automatic system to
monitor flying vegetable insects with an RGB camera and
a YOLO-based detection algorithm [11] named YOLO-
SIP. The system periodically captures images and sends
them to a cloud server over a wireless network for insect120

identification and classification. Similarly, other studies
[12, 13] used similar image acquisition and detection sys-
tems. Most cloud or remote server-based systems aimed
to increase insect detection accuracy, and they were not
concerned about computational power, memory usage and125

power consumption. In such systems, since the images
need to be transferred to the cloud, the system must be
equipped with a powerful, high-bandwidth, communica-
tion system, which directly affects the system cost and
energy consumption which can cause issues in remote de-130

ployments.
Several other recent studies have been conducted using

edge devices. In such systems, the objective is to perform
the image analysis task on the monitoring device itself.
However, edge devices typically have a considerably lim-135

ited resource budget compared to cloud or server-based
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systems. Li et al. [14] developed a few-shot recognition
method to identify cotton pests with an accuracy of over
95% accuracy. They benefited from Convolutional Neural
Network (CNN) and their system consisted of an FPGA140

for computation and an ARM to control the program.
An ultra-low power smart pest detection system was

proposed in [15]. The proposed system was based on GAP8
[16]. Their device worked only with low-resolution gray-
scale images (244x324 pixels) and extracted some potential145

area of the captured image and utilised a Machine Learn-
ing (ML) model for classification. This system needed
3.5mJ of energy to perform the image processing and the
classification and achieved an accuracy of 93%.

Saradopoulos et al. [17] proposed an edge- and camera-150

based system for insect counting in the context of smart
cities. The performance of three different devices includ-
ing a Raspberry Pi (RPi), an Espressif ESP32, and a
Google Coral were compared. ESP32 was suggested as the
best module for their application with an inference time of155

51 seconds and power consumption of 6mA in deep sleep
mode. Moreover, the quantization technique was used to
reduce the model size to 0.5MB and fit it into the device
memory. This study used regression to count the insects
and achieved an accuracy of 95%, thus species classifica-160

tion was ignored.
Brunelli et al [18, 19] developed an automated pest de-

tection edge device that used Deep Neural Network (DNN)
to detect Codling Moths in a pheromone-based trap. Their
system consisted of an RPi for image capturing and pro-165

cessing. The power supply consisted of a battery and a
solar panel to recharge the battery. The system detec-
tion pipeline included regions of interest (RoI) extraction
and RoIs classification. For the classification part, three
different DNN models including LeNet, VGG16 and Mo-170

bileNetV2 were trained, and gained an accuracy of over
95%. In terms of power consumption, several configu-
rations were analysed, and a system based on RPi3 and
LeNet consumed the lowest amount of energy at 123.2J.

Finally, Sütő [20] proposed an embedded insect moni-175

toring system using an OpenMV Cam board and the tar-
get insect was the Codling Moth. The algorithm used a
selective search method for object proposals, and the Mo-
bileNetV2 was used as a base model for the classification
part. The author also proposed a system based on an RPi180

and a camera [21]. The author used the same algorithm
for insect identification and counting as with the previous
work and the system required approximately 400 seconds
for one cycle operation with an average power consump-
tion of over 2.1W.185

In the mentioned works a variety of different types of
hardware were used for insect monitoring applications. Ta-
ble 1 compares the most common hardware used in such
applications. Based on the table, it is clear that microcon-
troller units (MCUs) have a much lower cost and power190

consumption than other solutions, thus, they can be con-
sidered the best option for insect monitoring applications
deployed in remote areas. However, it is important to es-

tablish whether their severely limited processing resources
are sufficient to provide reliable results for the detection195

of BMSB.
This work describes an optimised algorithm for insect

detection and identification designed to be used on a resource-
constrained platform. For this aim, the image analysis
algorithm was separated into two functions that run sep-200

arately. By doing so, each part can independently use
the whole available memory for its computations. This
network model jointly improved hardware metrics by de-
creasing memory usage, model size, model complexity, and
computation time without considerably compromising ac-205

curacy.

3. Proposed System

The proposed system works in repeated cycles, where
in each cycle, a picture of a double-sided trap is taken, the
image analysis carried out using DNNs and relevant results210

transmitted over a communication link. The device then
enters a long deep sleep mode between each processing cy-
cle. In this section, details regarding the proposed system
processing implementation, the techniques used, as well as
the deep learning model are described.215

3.1. System Components & Processes

Figure 2a illustrates the image acquisition and data
processing system first introduced, and described in de-
tail, in our preliminary work [22]. This automated insect
monitoring tool was developed and just recently deployed220

in an Italian orchard for a trial use (see Figure 2b). The
design specifications of the system can be found in [22],
while here, a brief overview of its key components and
functionalities is provided.

The system consists of a double-sided trap4, and a225

pheromone is applied to attract BMSBs. A white colour
trap was employed because it provides the highest contrast
with mottled brownish grey BMSBs and improves the de-
tection accuracy. Furthermore, the pheromone is unique
and attracts only BMSB, which reduces the probability of230

other insects being trapped.
Components within the system include an OpenMV5

board which is an MCU based board with an integrated
camera, an RGB LED to provide illumination and enable
the system to capture images at night, and a servo motor235

to rotate the trap to capture images from both sides of the
trap. In addition, as electrical supply cannot be assumed
to be available in remote orchards, the system uses bat-
teries, which can be recharged using an integrated solar
panel. In this version of the device, the data is transferred240

via an LTE (4G) connection.

4https://www.andermattuk.com/rebell-white-trap
5https://openmv.io/collections/products/products/openmv

-cam-h7-plus
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Table 1: Examples of hardware used in smart insect monitoring systems in the literature.

Memory Storage Max Power Price∗∗

Platform Example Capacity Capacity Consumption∗ ($)
(MB) (GB) (W)

Cloud/Server GPU Nvidia V100 ≥16384 ≥1024 250 ≥5K
FPGA Artix-7 ≥1024 ≥8 ≥1 ≥500
Mobile Phone iPhone 11 ≥4096 ≥64 8 ≥500
Raspberry Pi RPi 4B ≥1024 ≥8 5 ≥60
Microcontroller STM32H7 ≤1 ≤0.002 0.3 30
(MCUs)
∗Power consumption is approximate as it depends on several factors.
∗∗Prices are approximate due to the global chip shortage issue at the time of this report.
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Figure 2: System overview and components as described in [22].
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Figure 3: Diagram of steps followed per cycle.

Figure 3 shows the system timing diagram for an im-
age capture and processing cycle. In order to keep track
of the insect population trends during the growing season,
the system goes into the active mode for the insect detec-245

tion process twice in a period of 24 hours. This happens
one hour after the sunset and one hour before the sunrise.
After that, it goes into the deep sleep mode for the rest of
the day to decrease energy consumption. Since sunset and
sunrise vary during the year, they are calculated based on250

the location and the time zone of the deployment. The
system operation is divided into five main stages in each
operational cycle as follows:

Capture of images: The system takes images from
both sides of the trap using the integrated RGB camera.255

As mentioned earlier in the text, images are captured dur-
ing nighttime hours, one hour before sunrise and one hour
after the subset using the LED light. By doing so, the
lighting condition is controlled and remains consistent in
all images which is important for the object detection and260

classification processes.
The next step is the image analysis phase which con-

sists of two sub-steps including detection and classification,
shown in Figure 4. These two sub-steps are explained in
the following paragraphs:265

Processing and detection: In this step, the system
executes an image processing algorithm on the two cap-
tured images to detect and extract the potential Regions of
Interest (RoIs); An RoI is an area where the target insect
is likely to be present. To this purpose, as shown in Fig-270

ure 4, the algorithm converts the RBG image to grayscale.
Then, a smoothing filter is used to reduce some details,

such as insect legs or antennas (step 1). In step 2, Otsu’s
method is used to find an optimal threshold from the image
histogram to convert the image to a black-and-white im-275

age and separate the foreground (insects) and background
(trap surface). The last stage of the process is the use
of a blob detector to locate the potential areas where the
target insect may be present (step 3). The blob detector
detects blobs based on primary criteria, called size thresh-280

olds. Blobs are filtered out if their bounding box param-
eters are lower or higher than these thresholds. These
thresholds are defined and adjusted by the minimum and
maximum dimensions of the target insect size, which typ-
ically ranges from approximately 12 to 17 mm in length285

[23]. Since the distance between the camera and the trap
is fixed, these thresholds are valid and reliable. The de-
tected areas (RoIs) are cropped from the original image
for further analysis and are sized 150x150 pixels (step 4).
Details of this process are available in [22].290

Deep learning classification: In step 5, the ex-
tracted RoIs are fed into a deep learning model for clas-
sification. Based on the model result, the cropped images
are labelled as ’Yes’ or ’No’ indicating whether the image
belongs to a BMSB or not (step 6). The critical point295

for this phase is that the model should be optimised, be
small in size, and be sufficiently efficient to run and fit in
resource-constrained MCUs.

Results transfer: In this phase, the results are trans-
ferred to the cloud for further decision-making. To reduce300

power consumption associated with communications, in-
stead of sending images of the whole trap, the system only
transfers small (in terms of data size) results as regards
the presence of the relevant insect species. The JPEG
compression method with a quality of 90% is used to com-305

press the images which results in a typical image size of a
few KB (≤4 KB).

Sleep mode: Finally, the system goes to deep sleep
mode to reduce power consumption until the next sched-
uled image acquisition round needs to take place.310

3.2. Datasets

As mentioned in the previous section, the image anal-
ysis process is divided into two separate functions includ-
ing detection and classification. In the detection phase,
the system analyzes images sized at 1600x1200 pixels to315

extract RoIs, while in the classification phase, the sys-
tem analyses 150x150 pixels images to recognize BMSBs.
Thus, two separate datasets were created for these two
phases, the first one was used to evaluate the performance
of the detection phase and the second one was used for the320

classification phase. For this aim and because the system
was deployed in the orchard only recently, dead BMSB
specimens were used and glued on the surface of the trap
to create the first dataset of insect images in the labora-
tory. In addition, some images of real BMSB captured by325

the deployed system were added to this dataset named
Trap Dataset. This dataset contains approximately 40
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Figure 4: Image processing algorithm, from the raw captured image to classified RoIs.

laboratory-captured images and 70 images from the de-
ployed system in the orchard, all captured at a resolution
of 2MP (1600x1200) by our system.330

The second dataset (BMSB Dataset) was created by
using images of insects gathered from the deployed sys-
tem, available on the internet, and cropped BMSB images
from Trap Dataset. Augmentation methods were also em-
ployed to increase the number of images. Image augmen-335

tation applies some predefined transportation on original
images to create new ones. In this study, rotation, horizon-
tal flipping, and vertical flipping were used for augmenta-
tion. To this end, the dataset was first divided into train,
validation, and test sets which 75%, 12.5%, and 12.5% of340

the total data is assigned to each set respectively. Then,
augmentation was applied to the train set to decrease the
model overfitting and increase the generalization of the
model by increasing samples in the train set.

3.3. Classification Model345

The goal of the classification model is to recognize
whether the cropped image contains a BMSB or not. The
proposed deep learning model is based on CNN which is
specifically designed for image classification. The main
part of the CNN model is the convolutional layers which350

are responsible for recognising patterns, edges, and tex-
tures as well as for extracting this information from the
input image. These layers scan an input image using
small kernels (also called filters) and create feature maps
in which each kernel extracts specific features and gener-355

ates a corresponding feature map. Then, an activation
function is applied to the feature maps to introduce non-
linearity into the network, and thus, allows the approach
to recognize complex patterns and relations in data. In
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Figure 5: Dataset samples.
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Figure 6: Proposed classification model; IS: Input Size, C: Number of Channels, DwSConv: Depthwise Separable Convolution, Conv:
Convolution, BN: Batch Normalization, GAP: Global Average Pooling, FC: Fully Connected.

the final stage – which is known as the classifier part –360

the extracted feature maps are combined and analyzed to
make a decision on the content of the input image.

In this section, we explain how the DNN model was
created to meet criteria of being small in size and low
in complexity so that it can run on resource-constrained365

MCUs. For this goal, Depthwise Separable Convolution
(DwSConv) was employed instead of Standard Convolu-
tion (SConv) which is generally used to capture and ex-
tract important features and patterns from an input im-
age. DwSConvan is an effective method for reducing com-370

putations and parameters while maintaining a high accu-
racy level [24]. DwSConv factorizes a Standard Convolu-
tion into two steps; a depthwise convolution followed by
a pointwise convolution. This significantly decreases the
amount of computation as pointed out in [24], for example;375

a DwSConv with a kernel size of 3 decreases the compu-
tational cost by around 9 times.

Moreover, skip connections were used to improve the
proposed model performance by allowing data to flow eas-
ily from input to output and combining the features from380

different layers and, also, to help reduce the problem of
vanishing gradients during network training [25].

The suggested architecture is depicted in Figure 6. As
mentioned, DwSConv was used instead of SConv to ex-
tract features from an input image. In the suggested ar-385

chitecture, four DwSConv (with a kernel size of 3 and a
stride of 3 or 2) were used to extract features and reduce
the input dimension. A residual/skip block was used after
each DwSConv, except for the first one. This block is a
DwSConv that adds its input and output before the ac-390

tivation function (ReLU). Therefore, in this architecture,
the dimension size decreases from 150x150 in input to 3x3
after the last convolution layer. The channel number cor-
respondingly increases from 16 in the first DwSConv to
128 in the last one. For the classifier part, a Global Av-395

erage Pooling (GAP) layer was used followed by a Fully
Connected (FC) layer. This is a small and lightweight
CNN-based model that has around 46,000 parameters.

In order to deploy the trained model on MCUs with
extremely limited flash storage, it was quantized to 8-bit400

integers in the range of [-128, 127]. Quantization reduces
the model size, however, it may cause a slight reduction in
the accuracy compared to the float data type model which
uses 32 bits of precision. Based on our experiments, the

difference between the accuracy of quantized and unquan-405

tized option was approximately 0.2%, thus, the accuracy
of the quantized model of our proposed network remained
the same as with the unquantized model, while its model
size decreased by over two times.

4. Evaluation & Discussion of the Results410

This section describes how the experiments were car-
ried out, presents the evaluation results, and compares
them to other similar approaches in the literature. In order
to create a comprehensive evaluation, several important
aspects relevant to edge-based systems were investigated.415

To evaluate the power consumption performance of the
approaches, we considered the analysis of six BMSBs on
each side of the trap and powered the device with Otii Arc
Pro power analyser6. The power consumption of the sys-
tem was measured at different phases of operation using420

the power analyser. Besides, several CNN-based architec-
tures such as LeNet [26], MobileNetV1 [24], MobileNetV2
[27], SqueezeNet [28], and VGG16 [29] have been trained
on our BMSB Dataset and used to compare the perfor-
mance of the different approaches. MobileNetV1, Mo-425

bileNetV2 and SqueezeNet are lightweight network models
that are widely used in mobile and edge-based systems.
Besides these models, LeNet (as one of the simplest net-
work models) and VGG16 (as a bigger and more complex
model) were also trained to evaluate their performances430

and the possibility of using them on MCUs.
The proposed classification model was implemented in

the TensorFlow7 framework using Keras8. As there are
two classes (’Yes’ and ’No’), binary cross entropy was used
as a loss function. To reach the final optimized model,435

hyperparameters were tuned by varying epochs, batch size,
and learning rate. Therefore, the Adam algorithm was
used as an optimizer with a learning rate of 0.005, and the
epochs and batch size were set to 200 and 64, respectively.
ReLU6 was used as an activation function, and the dataset440

was divided into 80% and 20% for training and test sets.
In addition, dropout and spatial dropout techniques were
used to prevent overfitting during model training.

6https://www.qoitech.com/otii-arc-pro/
7https://www.tensorflow.org/
8https://keras.io/
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4.1. Evaluation Metrics

The accuracy of detection and classification results were
evaluated separately and based on different metrics. For
the detection phase, the accuracy was calculated by aver-
aging the ratios of the correct number of detected RoIs to
the actual number of RoIs on each image as follows:

Accuracy =
1

N

N∑
i=1

di
ni

, (1)

where N is the number of images, di is the number of cor-445

rect detected RoIs of the i-th image and ni is the number
of actual RoIs of the i-th image.

For the classification phase, four different metrics in-
cluding accuracy, precision, recall, and F1-score were used.
The accuracy represents the correct predictions over the450

total number of predictions. Precision indicates the pro-
portion of correct positive prediction and the total posi-
tive prediction, while recall indicates the proportion of cor-
rect positive prediction and actual positive. The F1-score
shows the balance between precision and recall metrics for455

a model [30]. These are metrics that are generally used for
binary classification models.

In addition to accuracy, the performance of the pro-
posed classification model in terms of computation metrics
including model complexity, size, and peak memory usage460

was also assessed. The model complexity was evaluated by
the number of MACs (Multiply-Accumulate) [31]. MACs
represent the number of multiplications and additions per-
formed during one inference. Moreover, the total device
energy consumption and run time of one cycle were mea-465

sured and evaluated to have a comprehensive assessment.

4.2. Accuracy & Model size

The detection algorithm achieved an accuracy of 93.8%
on the OpenMV platform. It was observed that most of the
detection errors occurred in the areas located at the edges470

of the image or trap. The algorithm can detect the black
objects that are surrounded by the white colour (back-
ground). These objects could be any object with the same
size as our target insects. For example, it could be any
insect species, such as a bee or a fly, or even a small leaf.475

When the trap image is converted to a black and white
image (see the black and white image in Figure 4 step 2),
insects located at the edges are mixed with the black area
around the trap surface, thus the algorithm is not able to
recognize them as a separate object on the trap surface480

since they are not surrounded by white colour. It should
also be noted that in high-density insect cases (when the
number of trapped insects is high), as the probability of
insects laying next to or over each other increases, the er-
ror might increase as well. The reason is that overlapping485

can increase the size of the detected blob and it might get
filtered out due to its size. Thus, it is recommended to
replace the trap weekly to decrease the chance of overlap-
ping.

0

20

40

60

80

100

Accuracy Precision Recall F1 Score

Our model

LeNet

MobileNet

MobileNetV2

SqueezeNet

VGG16

Figure 7: Comparison of the proposed system with different classifi-
cation models.

Table 2: Performance of the proposed classification model and com-
parison with other models.

DL Models Model size Parameters Inference
(MB) (M) Time (s)

Our model 0.08 0.046 0.07
(DwSConv)

Our model 0.3 0.3 0.1
(SConv)

LeNet 2.3 2.4 0.25

MobileNet 3.4 3.2 1.41

MobileNetV2 2.6 2.3 1.17

SqueezeNet 0.8 0.8 1.88

VGG16 14.5 14.7 48.22

Figure 7 illustrates the performance of the classification490

models in terms of accuracy, precision, recall, and model
size. The accuracy of our DwSConv model was 90.2% and
a 95% confidence interval (CI) of [89.3,91.1], the precision
was 93.2% (95% CI, 92.4-94.1), the recall was 90.2% (95%
CI, 88.9-91.4), and the F1-score was 91.6%(95% CI, 90.8-495

92.4). In comparison with the SConv model, only provided
here as a reference, the DwSConv-based model had better
performance and raised the accuracy by 2%. Moreover,
in comparison with LeNet, the proposed model achieved
better accuracy, however, it was lower than the other more500

complex models including MobileNet, MobileNetV2, and
VGG16. This was an expected result because the proposed
model is designed to be as light-weight as possible.

However, as we can see in Table 2, our model had 0.046
million parameters and its size was only 80 KB which is505

much smaller than the other models size, over 10 times less
than SqueezeNet and approximately 30 times less when
compared to other models. This is important as the amount
of flash storage in typical MCUs is less than 1MB. This
means that our model can easily fit in memory-constrained510

MCUs without any significant loss of accuracy, which is
critical for edge-based systems. Moreover, the proposed
architecture achieved considerably low inference time com-
pared to other models. The proposed DwSConv model
needed 0.07 s for each prediction. This is 3.6 times faster515

than LeNet, 20 times faster than MobileNet, 16.7 times
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Figure 8: Comparison of accuracy, complexity (MACs) and peak
memory usage; bubbles size represents the peak memory usage,
and its colour indicates the possibility of running the correspond-
ing model on typical MCUs.

faster than MobileNetV2, 27 times faster than SqueezeNet,
and approximately 688 times faster than VGG16. How-
ever, the inference time is not a critical factor for insect
monitoring applications, but it has a direct impact on the520

energy consumption. Since computational resources are
used for a longer period of time, increasing inference time
directly correlates with an increase in power consumption
as it is further explained in Section 4.4.

4.3. Memory usage & Complexity525

Memory usage is a key factor when a classification
model is supposed to be implemented on a resource con-
strained MCU. The peak memory usage of different models
is shown in Figure 8 with the size of the bubbles repre-
senting the memory usage in conjunction with levels of530

accuracy associated with the different models as well as
their complexity. The peak memory usage of the proposed
model was 75 KB which was 2.7, 9.7, 14.8, 8.4 and 38 times
less than LeNet, MobileNet, MobileNetV2, SqueezeNet
and VGG16, respectively. Therefore, the proposed model535

can easily run on general-purpose MCUs with less than
512 KB of RAM. This is not possible for the other models
with the exception of LeNet.

The same figure can also reveal the relative complex-
ity of the different approaches. The model complexity was540

evaluated based on the number of MACs needed for one
inference. As Figure 8 illustrates, the proposed model had
1.3 million MACs in one inference while this factor for
other models was much greater, being 24.8 M for LeNet,
231 M for MobileNet, 146.6 M for MobileNetV2, 305 M for545

SqueezeNet, and over 6 billion MACs for VGG16. The im-
pact of this factor is reflected to the inference time and con-
sequently to the energy consumption. The results clearly
indicate that the proposed DwSconv architecture has a
reasonable balance between accuracy, MACs, and peak550

memory usage when it is supposed to run on resource-
constrained MCUs.

&

Figure 9: Proposed system’s current consumption over different
phases of a cycle.

4.4. Power Consumption & Run time

The power consumption of the different approaches is
another critical factor which affects both the deployment555

feasibility and the cost of such a system as the one de-
scribed. Keeping the system in low power sleep mode for
as long as possible between image acquisition cycles will
significantly reduce the power consumption, but low power
consumption algorithms are essential to enable scenarios560

that require more frequent sampling duty cycles.
The OpenMV current consumption over a single cy-

cle is illustrated in Figure 9. The voltage was set to 5V.
Since the camera should capture two images (from both
sides of the trap), there are two peaks in the power profile565

associated with image capture. Also, there are two peaks
associated with image analysis for each of the images, for
the two sides respectively. In addition, the current con-
sumption during the classification component reaches the
highest value, thus reducing the classification time signif-570

icantly reduces the power consumption. Moreover, the
system current consumption was about 7mA in the deep
sleep mode which is almost 30 times lower compared to
the active mode (see Figure 9). The impact on the bat-
tery lifetime is significant.575

A comparison of the energy consumption of the pro-
posed system and another edge-based pest detection sys-
tem [19] for each of the five operations, mentioned in Sec-
tion 3.1, is depicted in Figure 10.In the work reported
by Albanese et al., the authors utilized a RPi for image580

capture, processing and classification. Another difference
between their system and ours is that this system only
takes and analyses one image, while our system works on
a two-sided trap, so it takes and analyses two images in one
run time. Based on this fact, our system consumed more585

energy in capturing mode as the trap needs to rotate two
times during this task, taking 9.75 seconds in total. There-
fore, in capturing function, our system consumed 12.09J
(of which 2.7J was consumed by the servomotor and LED)
while Albanese et al’s device consumed 1.67J. Overall, our590

system consumed less energy in one processing cycle, par-
ticularly in the boot and classification part. Our device
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Table 3: Energy consumption for different models run on OpenMV.

DL Total Total CL CL

Models runtime† energy time∗ energy∗

(s) (J) (s) (J)

Our model 16.37 17.9 2.52 3.24
(DwSConv)

LeNet 18.34 24 4.95 6.26

MobileNet 31.5 44.4 18.5 26.8

MobileNetV2 30.3 42.4 17.2 24.6

SqueezeNet 36.2 50.6 22.5 34.5

VGG16 618.54 932 605.4 914.07
∗Classification (CL) time/energy consumption for 12 images
†The booting phase is not considered in this table

needed 4.63J to boot while Albanese et al’s device needed
40.7J. In addition, in the classification function, our sys-
tem consumed just 3.24J while Albanese et al’s system595

needed 57.4J, meaning that around 18 times more energy
was expended by their system. Finally, in data transfer
mode, 0.6J and 2.15J was consumed by the proposed sys-
tem (wired serial connection) and Albanese et al’s device
which used LoRa, respectively.600

As previously mentioned, the classification component’s
energy consumption is dependent on the network model
used. Noted that the classification time depends on the in-
ference time meaning that a lower inference time leads to a
lower classification time as well. In this regard, the classi-605

fication time and energy consumption for different models
on the OpenMV system are reported in Table 3. As can
be observed, the system using the DwSConv model con-
sumed only 17.9J. This is 1.3, 2.5, 2.4, 2.8 and 52 times less
than LeNet, MobileNet, MobileNetV2, SqueezeNet and610

VGG16, respectively. As compared to the total energy
consumption, the classification component corresponds to
only 18.1% of it when DwSConv was used. Remarkably, by
increasing the complexity and, consequently, the inference
time (see Table 2), the contribution of the classification615

in the energy consumption increases significantly for the

other models. For example, when MobileNet was used,
more than 50% of the energy consumption was dedicated
to classification. As a result, the classification model plays
a key role in such a system’s energy consumption.620

4.5. System Lifetime

System lifetime is a critical factor in insect monitoring
systems since they should last for at least a growing season
when they are deployed in orchards. In this version of the
device, two packs of four series-connected batteries (AA625

NiMH rechargeable battery, 2.45Ah, 1.2V) are connected
in parallel so the battery bank voltage and capacity are
4.8V and 4.9Ah, respectively.

To calculate the battery lifetime, the energy consump-
tion of the device in one day should be computed. As630

mentioned earlier, the system goes into active mode twice
a day and it remains in sleep mode for the rest of the day.
In each of the active mode periods, it is assumed that the
system works for 30 seconds during which it consumes an
average of 300mA (see Figure 9). Moreover, the system635

consumes 7mA in sleep mode. Hence, every 24 hours, the
system consumes 300mA for 60 seconds and 7mA for the
remainder of the day. According to these values, the total
consumption for one day is about 0.83Wh, and as the bat-
tery capacity is 23.52Wh (4.9Ah · 4.8V), the system could640

continuously work for over 28 days without any charging
activity.

In addition, the system benefits from a solar panel to
charge the battery bank. The typical charging voltage of
the solar panel is 5.5V, the current is 100mA, and the con-645

version rate is up to 17%. Thus, based on these values, the
charging time needed to restore the battery to its full ca-
pacity is around 8.9 hours considering that 0.83Wh is con-
sumed per day. However, this is a theoretical estimation
and it is expected to be higher in cloudy weather condi-650

tions. But based on the fact that the day is much longer
than the estimated charging time, the battery bank is ca-
pable of being fully charged within a sunny day meaning
that the system can work on the battery for a long time. It
is worth mentioning that by using bigger solar panels, the655

charging time can be decreased. For example, the charg-
ing time can be decreased to 4.5 hours by using two solar
panels (the one used in this study) in parallel.

5. Conclusions & Future work

In this paper, a novel low-cost and low-power monitor-660

ing system was investigated for the detection of Halyomor-
pha halys, an invasive insect which causes a lot of damage
to fruit. The system employs light but efficient image pro-
cessing and deep learning mechanism which can run on
very low-cost microcontrollers. A series of experiments665

were run on a blend of real and artificial datasets. The
experimental results confirmed that it is feasible to run
complex deep learning approaches on MCU-based systems
on the edge. Compared to other approaches in the litera-
ture, the comparison showed significant gains in terms of670
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energy consumption and model size which greatly affect
the cost of the deployment. The compromise in terms of
detection accuracy was only a few percentile units away
from large in-size models.

To achieve a low memory usage, a separate detection675

and classification approach was suggested in this study.
Thanks to this approach, the system could load images
from the memory several times (i.e., load captured images
from both sides and run a detection algorithm to detect,
crop and save potential areas; then again load cropped680

images for classification). The process of loading images
from the memory increases the image processing time as
well as the power consumption. To tackle this issue, we
are planning to work on a single-stage algorithm that does
the detection and the classification simultaneously in order685

to decrease the image loading time, and thus, reduce the
energy consumption.

In addition, we are also planning to apply video analy-
sis and deep learning techniques for the detection of other
insects, especially those of smaller size, which could be690

really useful in terms of studying insect behaviour. More-
over, we will extend the proposed platform to support
other widely available commercial traps.

Data availability695

The dataset is available at https://doi.org/10.528
1/zenodo.7887046
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