
Enhancing Machine Learning Training Performance
in Smart Agriculture Datasets Using a Mobile App

Temirlan Zarymkanov∗, Amin Kargar†, Cristina M. Pinotti‡, Brendan O’Flynn†, Dimitrios Zorbas∗
∗Nazarbayev University, School of Engineering & Digital Sciences, Astana, Kazakhstan

†Tyndall National Institute, University College Cork, Cork, Ireland
‡Department of Computer Science and Mathematics, University of Perugia, Italy

Authors’ email: {firstname.lastname}@nu.edu.kz, {firstname.lastname}@tyndall.ie, cristina.pinotti@unipg.it

Abstract—The agricultural sector faces significant challenges
due to invasion of pests that damage crops and cause significant
loss of production. Traditional methods to detect these insects are
cost ineffective, thus, automated vision systems based on machine
learning (ML) have recently been proposed in the literature.
However, a significant issue is the lack of a prior dataset to
build the ML model on. To mitigate this problem, we propose
a new approach to train a model using a small initial dataset
and continually improve the accuracy process by retraining it
on new images labeled by a mobile application. Retraining is
performed on new data, which comes from a mobile application
that displays pictures of insects and prompts expert users to
label them. The users’ input is used to retrain the model on
new coming images. Specifically, our method trains the model on
100 initial images, and retrains it with every 100 new images.
The IP102 large-scale dataset for pest recognition was used to
demonstrate the effectiveness of the approach. The results show
an improvement of accuracy of up to 50 percentage units for the
built Convolutional Neural Network (CNN) model.

Index Terms—Machine Learning, Image Classification, Pest
Detection, Model retraining, Mobile application

I. INTRODUCTION

Agriculture is an important aspect of our life as the pop-
ulation of the earth is ever-growing and so is the demand
for food. Annually, 40% of the crops are destroyed by pests
creating gigantic losses for farmers1. If the issue of crop
damage caused by insect pests is addressed correctly, it could
result in economic benefits for the entire agricultural sector
and lower resource usage to produce a large amount of food
[1].

The initial step to prevent such damage is to identify and
categorize insects accurately, distinguishing between the harm-
less and the harmful ones. However, traditional monitoring
processes require particular training of humans to recognize
the insects and are time-costly and inefficient [2]. In that re-
gard, there has been a growing interest in using smart Internet
of Things (IoT) systems that employ artificial intelligence and
computer vision to detect pests, such as [3] and [4].

These IoT systems periodically collect data (pictures) from
the insects and transmit this data to a server (cloud). When a
considerable amount of data is collected, an ML model is built
and then it is transferred to the IoT device to autonomously
detect and classify the insects. It is important for this process

1https://www.fao.org/news/story/en/item/1402920/icode

to be done on the edge to avoid the time and energy-consuming
task of transmitting the pictures to the cloud but also to
improve the detection response time. However, the process of
collecting data to build the model may be considerably high,
while building a model using a few only data may lead to low
accuracy and false conclusions.

To mitigate such a problem, we propose a solution where
new pictures coming from IoT devices are fed to a mobile
application where expert users can identify and automatically
label the insects in the pictures. The model is then retrained
once the number of new labelled images exceeds a certain
threshold. Once the accuracy is above a certain level, the
model is then transferred to the IoT devices. We show through
a use case scenario on the IP102 large-scale dataset [5] that
the accuracy of the model can rapidly be improved.

The rest of the paper is structured as follows. The related
work is discussed in Section II. Section III presents the
methodology of the current work. Evaluation results of the
use-case scenario are presented and discussed in Section IV.
Finally, conclusions and ideas for future work are drawn in
Section V.

II. RELATED WORK

The related work is divided into two parts. The first part
is related to autonomous IoT systems with or without ML
where their focus is to autonomously detect and classify
insects, while the second part, deals with works about dataset
construction, augmentation, and transfer. Recent works of
these two categories are described below.

There are several projects dealing with the problem of
autonomous pest identification and classification. In one of
them, Miranda et al. [6] create a system for extracting insects
from images captured with digital cameras on the field. Then,
they apply background modeling to captured images to detect
the presence of pests, while they use a median filter to reduce
the noise in the image. In a similar work, Chen et al. [7]
investigate the use of sensors in conjunction with computer
vision using IoT data for insect classification. The authors use
the deep learning model YOLOv3 to detect pests and Long
Short-Term Memory to confirm its performance. They reach
an accuracy of 90% on their sample dataset. In another work,
using CNN-based models with multi-branch and multi-scale



attention network Ung et al. [8] achieve an accuracy of 74%
on the IP102 dataset.

Moreover, there have been several studies that combine
automated IoT systems with ML models. Guo et al. [4]
propose an automatic method for tracking flying vegetable
insects. The system makes use of a camera to periodically
take pictures and upload them to a cloud server through a
wireless network. The cloud server contains the YOLO for
Small Insect Pests (YOLO-SIP) model which is used for insect
classification. Zhao et al. [9] developed an automatic system
for pest detection based on a camera and a Raspberry Pi
board as an information collector. Images captured by the
information collector device are transferred to a cloud server
for processing, and then the results are displayed on the
end user’s device. The processing part benefited from a deep
learning model named DPeNet for insect detection and classifi-
cation. However, such systems use cloud-based servers that are
focused on improving the accuracy of insect detection and pay
little attention to computing capacity, memory requirements,
or power consumption.

In some other works, ML computing and image analysis
are performed on the edge device. A few-shot recognition
technique is created by Li et al. [10] to recognize cotton pests,
which uses triplet loss to categorize insect species and a CNN
to extract features. Their technique is put into practice on
an embedded system, which combines an ARM processor for
program control with a specially designed FPGA and achieves
95.4% accuracy on a dataset from the National Bureau of
Agricultural Insect Resources. Brunelli et al. [11] present an
ultra-low power smart pest detecting system for grayscale
images with a resolution of 244x324 pixels. This system uses
the GAP8 microcontroller [12] to create a machine learning
model and extract some areas of interest in the acquired image
for classification. It processes images and classifies objects
with an accuracy of 93%. Albanese et al. [13] propose an
edge device using Raspberry Pi to monitor Codling Moths.
This study investigates the performance of three off-the-shelf
deep neural network models including MobileNetV2, LeNet,
and VGG16 for image classification in terms of accuracy and
power consumption. Similarly, Suto [14] works on an embed-
ded insect monitoring system to detect Codling Moths based
on a Raspberry Pi board. This study also uses MobileNetV2
as a base model for insect classification.

The above studies worked on specific insects, and if the
system is to be used for other insects, the image processing
part must be trained for new insects, which means a new data
set is needed. But the problem is that the variety of insect
species is very large and there is no suitable dataset for each
of them. Therefore, the leading challenge is to collect the
appropriate dataset. A proper dataset should contain thousands
of images of each class which is a time-consuming process.

Hence, insect detection models generally suffer because of
the insufficient number of images of targeted insects. In small
datasets, the lack of diversity of classes leads to overfitting and
poor generalization which negatively affect the accuracy. For
example, Kargar et al. [15] proposed an edge-based device to

monitor and detect the Halyomorpha Halys (HH) in orchards
using a CNN-based model. This system was trained using
a small dataset and achieved 70% accuracy when it was
deployed in an orchard. This obviously highlights the impact
of a small dataset on accuracy in real-world scenarios.

There are several methods that try to resolve issues related
to small datasets. One of the proposed solutions is artificial
data generation. Li et al. [16] introduce mega-trend-diffusion
(MTD) that is commonly used to generate synthetic train-
ing samples. The MTD method employs a shared diffusion
function to disperse a group of data and applies information
diffusion through fuzzy possibility distribution to establish
potential coverage of a dataset across an attribute domain.
Another approach is data augmentation, which applies data
transformations such as rotation, translations, and flips. Han
et al. [17] propose a novel two-phase method combining
CNN transfer learning and web data augmentation. They
use a pre-trained network, while the original small dataset
can be augmented with images, and therefore expand the
training dataset and achieve a better performance. Sorbelli et
al [18] worked on the detection of Halyomorpha halys (HH)
in orchards. In this study, drones were used to capture images
from the target insect in orchards. Then several augmentation
techniques were used to increase the dataset, and a YOLO-
based model was utilized to detect HH on the collected
dataset. Although the augmentation technique is commonly
used to increase the dataset size, mitigate overfitting and
improve model generalization, it has its own limitations as
well. This technique uses predefined transformations to create
new images from existing images, so it may not represent
diversity in real-world data. In fact, since there are lots of
insect species, this technique could not properly reflect real-
world diversity in such datasets.

Reading the literature review, it is straightforward that
despite the research effort on implementing efficient ML
solutions on the cloud/edge, the problem of low accuracy due
to the initial small size of samples still exists.

III. METHODOLOGY

This section presents the methodology followed in the
proposed approach along with the dataset and information
about the mobile application.

A. Phases

As shown in Fig. 1, the methodology of the proposed solu-
tion is divided into two phases. The first process is responsible
for the model training using a small dataset (training set) while
the second phase is responsible for retraining the data using
the labeled information from the app. Data from the training
set is preprocessed and used to train the initial version of the
model. The initial model is then saved on a cloud platform.
In the second phase, images from the retraining set are used
in a mobile application to get user feedback. The new labeled
images are stored in the cloud platform, and once the number
of labeled images is enough, the model retraining is initiated
and its accuracy is recorded.



IP102 Dataset Retraining set

Training set

ML model

Model training

Mobile app

Data labeling

Cloud platform

Model retraining

Phase 1 Phase 2

Fig. 1. The methodology followed in the approach.

Fig. 2. Two chosen insects from IP102 dataset, Left: Cicadellidae, Right:
Lycorma delicatula.

B. Dataset

For the needs of our study, the IP102 dataset is employed.
It is the largest publicly available pest detection dataset con-
taining 75,222 images of insects belonging to 102 categories.
For convenience and presentation purposes, we have reduced
the size of our dataset images to 7600 images by choosing
only two classes with the largest number of images: “Lycorma
delicatula” with 3716 images and “Cicadellidae” with 4017
images. Some samples of these two insects are shown in Fig.
2. Binary classification was chosen in order to simplify the
training process and reduce the training time. The reduced
dataset is split into two sets: the training and the retraining

Input image [224x224x3]

C
onv-1

C
onv-2

C
onv-3

Feature
E

xtractor

Dense

Flatten

Sigmoid

Class Probabilities

C
lassifier

FC
-4

C
hannels

(depths):
112x11232

56x56
64

28x28128
64

Conv
Max Pooling

Conv
Max Pooling

Conv
Max Pooling

Fig. 3. The adopted Machine Learning model architecture.

parts. As it was mentioned in the previous subsection, the
training set contains labeled images and is used for initial
training of the model. The retraining set consists of unlabeled
images that will appear in the mobile app where expert users
can label these images.

C. Machine Learning Model

In order to correctly identify and classify insects, a CNN
model is built using the Keras API in TensorFlow library. The
proposed network model consists of several layers as shown
in Fig. 3. The convolutional layer (Conv) is used to detect and
extract important features such as edges, textures and patterns.
A max-pooling layer is applied after each convolutional layer
to reduce the feature map dimensions while keeping important
information. This combination of layers is repeated three
times to capture and extract important features from the input
image. Then, a fully connected (FC) layer is used to perform
the classification task. The output layer is a single-neuron
layer with a sigmoid activation function that represents the
likelihood of the input image belonging to one of the two
classes (Cicadellidae or Lycorma Delicatula).

The model has 5,631,169 parameters in total and it is trained
to minimize the binary cross-entropy loss and optimized with
the Adam optimizer. The model input shape is 224x224x3,
which represents the dimensions of the input images.



Fig. 4. A screenshot of the mobile application where the user indicates
whether the inspected insect is present in the sample picture or not. The
app works for one insect per time. (An image from the Andoird emulator is
shown for presentation purposes.)

D. Mobile application

Fig. 4 shows a sample screenshot of the mobile application
which prompts the users to answer the question “Is Cicadell-
idae there?” by choosing one of two buttons. If the user taps
“Yes”, the Cicadellidae label will be assigned to the image.
After each choice, a new image is shown.

The mobile application was created using the Dart program-
ming language and the Flutter2 framework which was chosen
due to its cross-platform feature that gives the ability to launch
it on both iOS and Android phones. Moreover, Python and
Django3 were used to create an API that handles requests from
mobile applications. The Django application was hosted on the
Heroku4 cloud server.

A requirement of the system that employs the mobile
application is that expert users with sufficient knowledge about
the inspected insects must be available. If the labeling of data
is done incorrectly, then more time to collect more images will
be required to adapt to a better accuracy.

IV. EVALUATION & DISCUSSION OF THE RESULTS

The evaluation methodology along with evaluation results
run on the IP-102 dataset are presented and discussed in this

2https://flutter.dev
3https://www.djangoproject.com
4https://www.heroku.com

Fig. 5. Model accuracy and loss for different numbers of images per
retraining.

section.

A. Evaluation metrics

There are several metrics and methods available to evaluate
the proposed approach. First, a number of metrics to assess the
model performance were used. The accuracy of the model is
the most important one, as it shows the percentage of correctly
predicted classes. Other known model evaluation metrics such
as the Binary Cross-Entropy Loss, the recall, and the F1-score
were also employed.

Second, the rate of accuracy improvement was measured.
To do so, a different number of images per retraining process
is selected to see how much the model performance changes
and at what rate. Finally, for the needs of the experiments (not
for a real-world scenario), the best ratio of splitting the dataset
into training and retraining sets was identified.

B. ML Model Performance

The initial model training was done using 100 images out
of 3317 images. While the training dataset size increases with
each retraining iteration, the test dataset size remains the same.
Fig. 5a shows the model performance for 100 and 500 images
per retraining. The accuracy increases from 40% to 90% in
both cases. Additionally, Binary Cross-Entropy Loss, a metric
which is commonly used in binary classification, is shown
in Fig. 5b. Lower values of the Binary Cross-Entropy Loss
indicate that the model assigns higher probabilities to the
correct class and lower probabilities to the incorrect class.



Fig. 6. ML evaluation metrics per retraining step (every 100 images).

Thus, the results indicate that the model performance is
improving with retraining new images.

Fig. 6 shows the precision, the recall, and the F1-score
for the model that was retrained with 100 images and each
retraining iteration score was recorded. Recall measures the
proportion of correctly predicted positive instances out of
all actual positive instances. It increases from around 45%
to 97%, which means that the model can identify positive
instances more often. Precision shows how many of the
positive predictions made are correct (true positives). It also
increases with each retraining, and when the model predicts
a positive result, it is likely to be accurate. F1-score is a
harmonic mean of precision and recall, and it is useful when
dealing with imbalanced data, which is often the case with
small datasets. The F1-score increases with the retraining
and we can conclude that the model correctly identifies both
classes.

C. Initial training set size

During the initial training of the dataset consisting of
100 images, the accuracy was around 40%. We saw in the
previous subsection that after retraining the model with the app
feedback, the accuracy increased to 90%. In this subsection,
we assessed the impact of the initial dataset size on the model
performance by selecting a larger initial set.

Fig. 7a depicts the model’s accuracy results, which was
trained on 30% of the whole dataset and retrained on 70%
of it. The difference was only in the base accuracy, which
was 70% at the beginning, but increased to 90%. In addition,
as depicted in Fig. 7b, Binary Cross-Entropy Loss decreased
in both cases and, as with accuracy, the difference was in the
initial loss value. These results confirm the usefulness of the
methodology using the mobile app even with large initial sets.

V. CONCLUSION & FUTURE WORK

In this paper, we proposed an approach to improve the
accuracy of an insect classification model trained on a small
initial dataset. This approach involves retraining the model

Fig. 7. Model accuracy and loss for different retraining and training set sizes.

with newly gathered images that are labelled using a mobile
application handled by experts. To evaluate the effectiveness
of the approach, we trained the model on 100 pictures of the
insects as a small initial dataset, and then continuously kept
adding new images to retrain the model. This way, our model
performance improved from 40% to 90.2% with the help of
the mobile application used for labeling and retraining. The
proposed methodology can be used in cases where there is not
a lot of data available to train a model of high accuracy, for
example, in presence of new discovered insects.

In the future, we are planning to work on the feasibility
of implementing the training and retraining approaches on an
IoT device.

ACKNOWLEDGEMENT

This publication has emanated from research conducted
with the financial support of the Haly.ID project – 2020EN508
funded by Ireland’s Department of Agriculture, Food and
the Marine under Grant: 2020 Trans National ERA-NET and
Nazarbayev University grant No. 11022021FD2916 for the
project “DELITMENT: DEterministic Long-range IoT MEsh
NeTworks”. The second author is supported by a Walsh Schol-
arship funded by Teagasc, The Irish Food and Agriculture
Authority.

REFERENCES

[1] N. Ullah, J. A. Khan, L. A. Alharbi, A. Raza, W. Khan, and I. Ahmad,
“An efficient approach for crops pests recognition and classification
based on novel deeppestnet deep learning model,” IEEE Access, vol. 10,
pp. 73019–73032, 2022.



[2] A. Gutierrez, A. Ansuategi, L. Susperregi, C. Tubı́o, I. Rankić, and
L. Lenža, “A benchmarking of learning strategies for pest detection and
identification on tomato plants for autonomous scouting robots using
internal databases,” Journal of Sensors, vol. 2019, pp. 1–15, 2019.

[3] H. Nagar and R. Sharma, “Pest detection on leaf using image process-
ing,” in 2021 International Conference on Computer Communication
and Informatics (ICCCI), pp. 1–5, 2021.

[4] Q. Guo, C. Wang, D. Xiao, and Q. Huang, “Automatic monitoring of
flying vegetable insect pests using an RGB camera and YOLO-SIP
detector,” Precision Agriculture, vol. 24, no. 2, pp. 436–457, 2023.

[5] X. Wu, C. Zhan, Y.-K. Lai, M.-M. Cheng, and J. Yang, “Ip102: A large-
scale benchmark dataset for insect pest recognition,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pp. 8787–8796, 2019.

[6] J. L. Miranda, B. D. Gerardo, and B. T. Tanguilig III, “Pest detection and
extraction using image processing techniques,” International Journal of
Computer and Communication Engineering, vol. 3, no. 3, p. 189, 2014.

[7] C.-J. Chen, Y.-Y. Huang, Y.-S. Li, C.-Y. Chang, and Y.-M. Huang, “An
aiot based smart agricultural system for pests detection,” IEEE Access,
vol. 8, pp. 180750–180761, 2020.

[8] H. T. Ung, H. Q. Ung, and B. T. Nguyen, “An efficient insect pest clas-
sification using multiple convolutional neural network based models,”
arXiv preprint arXiv:2107.12189, 2021.

[9] N. Zhao, L. Zhou, T. Huang, M. F. Taha, Y. He, and Z. Qiu, “Devel-
opment of an automatic pest monitoring system using a deep learning
model of dpenet,” Measurement, vol. 203, p. 111970, 2022.

[10] Y. Li and J. Yang, “Few-shot cotton pest recognition and terminal real-
ization,” Computers and Electronics in Agriculture, vol. 169, p. 105240,
2020.

[11] D. Brunelli, T. Polonelli, and L. Benini, “Ultra-low energy pest detection
for smart agriculture,” in 2020 IEEE SENSORS, pp. 1–4, IEEE, 2020.

[12] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “Gap-8: A risc-v soc for ai at the edge of the iot,” in 2018
IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 1–4, IEEE, 2018.

[13] A. Albanese, M. Nardello, and D. Brunelli, “Automated pest detection
with dnn on the edge for precision agriculture,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 3,
pp. 458–467, 2021.

[14] J. Suto, “A Novel Plug-in Board for Remote Insect Monitoring,”
Agriculture 2022, Vol. 12, Page 1897, vol. 12, p. 1897, nov 2022.

[15] A. Kargar, M. P. Wilk, D. Zorbas, M. T. Gaffney, and B. Q’Flynn, “A
novel resource-constrained insect monitoring system based on machine
vision with edge ai,” in 2022 IEEE 5th International Conference on
Image Processing Applications and Systems (IPAS), vol. Five, pp. 1–6,
2022.

[16] D.-C. Li, C.-S. Wu, T.-I. Tsai, and Y.-S. Lina, “Using mega-trend-
diffusion and artificial samples in small data set learning for early
flexible manufacturing system scheduling knowledge,” Computers &
Operations Research, vol. 34, no. 4, pp. 966–982, 2007.

[17] D. Han, Q. Liu, and W. Fan, “A new image classification method using
CNN transfer learning and web data augmentation,” Expert Systems with
Applications, vol. 95, pp. 43–56, 2018.

[18] F. Betti Sorbelli, L. Palazzetti, and C. M. Pinotti, “Yolo-based detection
of halyomorpha halys in orchards using rgb cameras and drones,”
Computers and Electronics in Agriculture, vol. 213, p. 108228, 2023.


