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Abstract—A major advantage of wirelessly powered devices
is the use of wire-free and sometimes battery-free nodes that
can operate for extremely long times. However, to extend or
even to achieve infinite network lifetime a set of chargers is
needed to periodically transmit energy to the nodes through the
emission of RF signals. In this paper, we study the problem of
finding the optimal number of chargers so that a group of nodes
can operate without using power sources other than wireless
charging. We show that this problem is equivalent to the set-
cover problem which is NP-Complete. We propose an efficient
heuristic that bypasses the high computational cost of finding
the overlapping segments of the harvesting sensor disks and we
compare this heuristic to other optimal and non-optimal set-
cover solutions. The results show significant performance gains
in terms of execution time while keeping the number of chargers
close to the optimal value.

I. INTRODUCTION

The new industrial revolution has as its basis the use of
hundreds of tiny wireless devices that can sense or control
their environment. These sensors not only have limited power
resources since they are usually powered by batteries but
very often they are also deployed in inaccessible places. The
deployments with sensors powered by a permanent power
supply suffer from complex cabling systems and very limited
mobility.

To alleviate the energy demands of the sensors and comfort
the cabling problems, the use of energy harvesting techniques
have been recently proposed [1]. Unlike other power harvest-
ing methods (solar, vibration etc.), RF-power harvesting can
recharge multiple devices at the same time, thus decreasing
even more the amount of needed cabling and easing the
network maintenance.

The energy transfer in RF-power harvesting is achieved
either by taking advantage of the ambient RF signals trans-
mitted by nearby primary devices or by dedicated chargers
that continuously transmit fake data aiming at recharging the
nodes. Ambient harvesting has the advantage that it does not
require any additional equipment, however, the amount of
harvested power varies over time and is much lower compared
to dedicated chargers [2].

In this paper, we consider battery-less sensors with energy
storage provided by super-capacitors. The super-capacitors are
periodically recharged by dedicated chargers and they can
provide enough energy to the nodes to operate until the next
recharge [3], [4]. However, finding the optimal number and
positions of the chargers is a critical problem for maximizing

the network lifetime and for reducing the operating costs. For
these reasons, we introduce the Optimal Number of Chargers
(ONC) problem for deployments with battery-free nodes and
we show that it is equivalent to the set-cover problem which
is NP-Complete.

To solve the ONC problem we propose an efficient heuristic
with low complexity. Unlike state-of-the-art set-cover ap-
proaches, our solution bypasses the costly computation of the
overlapping areas of the sensor harvesting disks. It creates a
graph based on the maximum harvesting distance of the nodes
and computes the maximum clique of the graph. Simulation
results confirm the lower computation cost of the approach.

The rest of the paper is organized as follows. In Section
II we describe the energy consumption and harvesting models
and we introduce the ONC problem. Section III describes the
proposed solution and Section IV presents the comparison
and evaluation results. Section V is dedicated to the related
work and, finally, Section VI concludes the paper and presents
directions of future work.

II. THE OPTIMAL NUMBER OF CHARGERS PROBLEM

A. Preliminaries

We split the transmission time in rounds where each round
has two phases. During the first phase the nodes get recharged
by fake data transmissions of the chargers. The duration of
this phase depends on the energy needs of the sensors during
the second phase. In the second phase, the nodes transmit
their sensing data to the sink spending some of the energy
stored in their super-capacitors. Another portion of energy is
spent for sensing and other operations. During these two main
operations the node remains in active mode. The rest of the
energy is used to keep the nodes alive while not transmitting,
i.e. when the nodes are in sleep mode.

We adopt the same communication model with [5], where
each round is divided in slots. During the first phase the
chargers simultaneously transmit fake data while in the second
phase we allow only one transmission per slot to avoid
interference. Since the data packet rate of the nodes is fixed,
we can predict the amount of energy a node consumes during
a round and, thus, we can predict the desired duration of the
chargers fake data emission.

The energy a node consumes depends on the sensing cost,
on how many packets it transmits, and on the amount of time
the node remains in active or sleep mode. The nodes take
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measurements periodically and generate data of size D. The
data is encapsulated in a packet of size p bits and it is trans-
mitted to the sink. A node can transmit k packets per round
which lasts τ time units. The energy spent for transmitting (per
bit) is α + βd2b, where α is the energy/bit consumed by the
transmitter electronics, β accounts for the energy dissipated in
the transmit op-amp, and b is the amplitude loss exponent [6].

The total energy cost of a node i per round is Cτi .

Cτi = (α+βd2bi )
k · p
dr

+Des+Pacttact+Prsttact+Pslp(τ−tact),
(1)

where dr is the transmission data rate, es is the sensing cost
per bit, Pact and Pslp are the power costs while remaining
in active and sleep mode respectively. Prst is a fixed power
cost for the rest of operations (processing, storage etc.). Note
that in this paper we assume that tact is fixed since the nodes
generate the same amount of data per round.

We adopt the energy harvesting model proposed in [5]
where the energy harvested by a node i in time t while it
is in the harvesting range of a charger j is given by (2):

Ht
i =

∫ t≤τ

0

P dijrx f
dij
pke
dr

dt, (2)

where P dijrx is the received power, fdij is the efficiency of the
harvesting antenna at distance dij1, and ke is the number of
fake packets transmitted per time period. A node may harvest
energy using multiple chargers, however, since the harvesting
power attenuates considerably with the distance, we assume
that the power source can be provided by (the closest) single
charger.

The received power at distance d is given by the following
propagation model [7]:

P drx = P0
e2σG

(dρ )2b
, (3)

where e2σG has a log-normal distribution with a shadowing
coefficient σ (G ∼ N(0, 1)). The term 1/(dρ )2b accounts for
the far-field path loss with distance d, where the amplitude
loss exponent b is environment-dependent. P0 is the received
power at reference distance (i.e., ρ).

Due to the discharge properties of the super-capacitors,
some of the harvested energy is lost. We define this energy
loss as a function of the time between two successive recharges
lti = λHt

i , where λ is the power loss factor (0 < λ < 1).

B. Problem formulation

Given a set of sensors S = {s1, s2, ..., sn}, we formulate
the ONC problem as a minimization problem of the number
of chargers N so that the energy consumption per round for
each node in S is at least equal to the energy the node harvests
for the same period of time minus the energy losses:

minN : Cτi ≤ Ht
i − lti ∀ i ∈ S. (4)

Next, we will show that the ONC problem is equivalent to
the set cover problem which is NP-Complete.

1we use the model provided by the manufacturer Powercast
(http://www.powercastco.com)

We set Ai the disk with center the coordinates of node i
and range the maximum distance a charger can be placed away
from i such that Cτi = Hτ

i − l(τ). Ai may overlap with one
or more other disks in the network constructing overlapping
segment areas of different size.

The overlapping areas create a mosaic of m segments each
of them covered by one or more sensors. Each segment area
j corresponds to a set Oj containing the sensors covering this
particular area. m sets are created with m ≥ n, min |Oj | = 1,
and max |Oj | = n,min |Oj | = 1 j ∈ [1,m]. | · | describes the
cardinality of set ·. An example with 7 nodes and 13 segment
areas is presented in Figure 1, where OA = {2}, OB = {1, 2},
OC = {1, 2, 3}, OD = {2, 3}, OE = {1, 3}, OF = {1},
OG = {3}, OH = {4}, OI = {6}, OJ = {6, 7}, OK = {7},
OL = {1, 5}, and OM = {5}.

Fig. 1. An example with 7 nodes (numbers), their disks, and the segment
areas (letters).

The ONC problem is transformed to a problem of com-
puting the set O = {O1...Oξ} with the minimum possible
cardinality ξ such that every sensor in S exists in at least one
subset in O.

Thus, given sets Oj , ONC is equivalent to the set-cover
problem.

III. THE MULTIPLE MAXIMUM CLIQUE HEURISTIC

In this section, we propose a fast heuristic to solve the
ONC problem. Since our problem is equivalent to the set-cover
problem, the first thought is to use a fast greedy approach
to solve the equivalent corresponding problem. However, this
would require the computation of the segment areas, a problem
which has complexity O(n3) [8].

To avoid the high computation cost of the segment areas we
propose the Multiple Maximum Clique Heuristic (MMCH).
MMCH constructs a unit disk graph G(V,E), where V
contains the nodes in S, while two nodes i, j, i 6= j are
connected with an edge if the distance between each other
is lower than the sum of the ranges of their disks. G requires
at most n(n+1)

2 computations to be constructed.
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Algorithm 1: MMCH
require: G

1 N = 0;
2 C = ∅;
3 foreach v ∈ V do
4 if degreev == 0 then
5 G := G \ {v};
6 N := N + 1;
7 C := C ⊕ {v};
8 end
9 end

10 Gtmp := G;
11 while |V | > 0 do
12 q := false;
13 while q == false do
14 compute the maximum clique Q in Gtmp;
15 if there is common intersection point of the disks

of all sensors in Q then
16 q := true;
17 end
18 else
19 remove from Gtmp the vertices whose disks

do not overlap with the most covered
segment area in Q;

20 remove from Gtmp any other non-member
vertex of Q;

21 end
22 end
23 G := Gtmp;
24 foreach v ∈ Q do
25 G := G \ {v};
26 end
27 N := N + 1;
28 C := C ⊕Q;
29 end
30 return (N, C);

In the first step of MMCH (see algorithm 1) the algorithm
removes from G the nodes with zero degree. These are nodes
whose disks do not overlap with any other disk in the network.
A number of chargers equal to the number of these nodes is
added to N . For the rest of the nodes in G, MMCH uses a
number of successive maximum clique computations in order
to find the most covered segment areas in the network.

The rational of the maximum clique is the following. If
the disks of a number of sensors intersect then these nodes
belong to a clique with clique number equal to the number
of sensors [9]. The most covered segment area in the network
is a maximum clique in G. However, the reverse statement
does not always hold; that is if a number of sensors belong
to a clique, their disks do not always intersect with each
other. MMCH computes the maximum clique of a copy graph
Gtmp and stores the nodes in set Q. To check if the sensors
in Q intersect, Helly’s theorem [8] is used with minimum
and maximum computational complexity Ω(1) and O(|Q|3)
respectively (|Q| ≤ n). If the disks intersect, the nodes in Q

are excluded from future computations and G is updated. If
not, the vertices whose disks do not overlap with the most
covered segment area in Q are removed from Gtmp and Q
is recomputed. To lower the complexity of an eventual re-
computation of the maximum clique, all other vertices not
included in Q are also removed from Gtmp. The initial graph
G is restored after the computation of the final maximum
clique. The algorithm terminates by returning the collection
of subsets C and its cardinality N .

The loop of lines 11-22 ensures that all the nodes in S will
be included in a subset in C. If more than one maximum clique
of same size exist in G the algorithm selects one randomly.
Since G is reduced after every clique computation, some nodes
may have zero degree. If no clique is found, the algorithm will
randomly select a node with zero degree.

The complexity of MMCH mainly depends on the computa-
tion cost of the maximum clique which can be computed fast
for sparse and large graphs like those of 2 or 3-dimensional
networks [10]. We note that cliques can be computed in
polynomial time when the geometric representation is pro-
vided [9]. We must, also, note that the While loop of lines
13-21 is executed at most two times with maximum cost
O(|Q|3 + |Q− ι|3), where ι the number of conflicting nodes.
The lower computation bound is Ω(1).

The possible charger positions computed by MMCH are
infinite, lying within the borders of the corresponding seg-
ment areas. However, this position can be optimized in
order to reduce the operating costs (e.g., electricity cost).
OptimalSearch() is a subroutine which approximates
the optimal position of each charger by exhaustively search-
ing a segment area. The optimal position is defined as the
position where the total harvesting energy of the nodes in
a subset in C is maximized. The approximation factor of
OptimalSearch() is ε, where ε is a user-given value.
Finally, the range of each individual charger can be adjusted
based on the furthest node in its vicinity.

IV. EVALUATION & DISCUSSION OF THE RESULTS

A. Setup

We assume a scenario with a fixed size square terrain of
25 meters side and a variable number of nodes randomly
and uniformly scattered on the terrain. We compare MMCH
to a state-of-the-art fast greedy algorithm that solves the
corresponding set-cover problem [11] and to an integer linear
programming (ILP) set-cover solution that uses the GLPK2

library to optimally solve the problem instances. We measure
the minimum number of chargers as well as the execution
time of the three approaches. Due to the presence of random
values, we run each instance 10 times and the average results
are presented. The 95% confidence intervals are also displayed.

Regarding the node and charger characteristics, we con-
sider the following values: p = 127bytes, D = 256bits,
dr = 250Kbps, k = 1 packet per round, ke = 150 packets/sec
(unless specified), τ = 30 seconds, σ = 0.1, P0 = 10mW ,
ρ = 1m, α = 50nJ , β = 100pJ , and b = 1. We, also,

2https://www.gnu.org/software/glpk/
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Procedure OptimalSearch(V, ε)
require: a subset V in C, ε

1 compute µ: the sensor with the shortest range in the
subset;

2 Umax := 0;
3 fp := (0, 0);
4 for i = 0; i ≤ xµ + rµ; i = i+ ε do
5 for j = 0; j ≤ yµ + rµ; j = j + ε do
6 c := 1;
7 foreach s ∈ V do
8 if distance to (i, j) ≥ rs then
9 c := 0;

10 end
11 end
12 if c == 1 then
13 U := 0;
14 foreach s ∈ V do
15 U = U +Hs;
16 end
17 if U > Umax then
18 Umax := U ;
19 fp := (i, j);
20 end
21 end
22 end
23 end
24 return fp;

consider 10% energy loss between recharges (λ = 0.1).
We assume Zigbee communication characteristics operating at
915MHz. Regarding the charger and the harvesting efficiency
we used the values provided by Powercast corporation for the
P2110B model3 operating at the same frequency. k, ke and
the node densities are chosen so that no interference exists
between the chargers and the nodes (assuming that each node
allocates a single slot in each round). The sink is placed in
the middle of the left side of the terrain. The algorithms were
developed using the Perl programming language whereas the
experiments were carried out on an Intel Core2 Duo 1.67GHz
CPU with 4GB RAM running Linux. No parallel processing
was performed.

B. Results

Figure 2 depicts the results for a scenario with a variable
number of nodes and a fixed fake data rate 100 packets/sec.
MMCH produces a higher number of chargers but close to the
optimal solution. The greedy approach results are similar to
the ones achieved by MMCH. On the other hand, the execution
times of the LP and Greedy algortithms are higher especially
when many nodes are deployed. The higher computation cost
of the two approaches is due to the high complexity of
the integrated routine that computes the disk overlappings.
MMCH postpones or even skips this initial computation to a

3A simulator was developed to approximate the manufacturer’s values:
http://ulr.gforge.inria.fr/
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Fig. 2. Number of chargers (upper) and execution time (lower) for a scenario
with ke = 100 packets/sec.

later phase involving a smaller number of nodes and reduced
complexity.
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Fig. 3. Number of chargers (upper) and execution time (lower) for a scenario
with 60 sensors.

In the next experiment we assess the impact of the fake
data packet rate (i.e., ke) on the number of chargers and
on the execution time. In fact, this packet rate affects the
time a charger transfers energy to the nodes. The results
illustrated in Figure 3 show that the number of chargers is
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significantly lower as the packet rate increases. The three
approaches exhibit results very close to each other. However,
in terms of execution time LP presents a linear increase unlike
MMCH which depicts a smoother behavior. This increased
execution time of the LP and Greedy algortihms is again due
to the high computation complexity of finding the overlapping
areas that rapidly increases as ke is getting higher.

Fig. 4. Solution provided by MMCH for a scenario with 20 nodes and ke =
20 packets/sec.

Figure 4 shows an MMCH solution with the positions of
the chargers (squares), the positions of the nodes (dots), and
their corresponding disks (circles). An instance with 20 sensors
and ke = 20 packets/sec was used. The algorithm computes
12 charger positions (equal to the optimal value) with 5
chargers covering multiple sensors and 5 chargers covering
single sensors. Finally, Figure 5 depicts the evolution of the
graph and five maximum cliques computed in every step of the
algorithm. Graph G is displayed with green and the maximum
clique with bold color within the graph. The five cliques have
size 4, 3, 2, 2, and 2, respectively.

V. RELATED WORK

Similarly to the current paper, Pang et al. examine the
problem of finding the optimal number of chargers to replenish
the energy of a set of sensors [12]. They propose a partition
algorithm to approximate the optimal solution. They prove
that their approach has 0.5 probability to achieve the optimal
solution. However, no simulation results are given and as it
is also mentioned in [13], the harvesting model they used is
extremely simplified and not practical.

The charger positioning problem has been recently studied
as a problem of maximizing an objective function subject
to a power budget [14]. The objective function depends on
the maximum consumption of the nodes and the power they

harvest for a given deployment. The authors formulate an
optimization problem and show that it is NP-Complete. They
present approximation algorithms as well as greedy heuristics
to find close to the optimal charger positions and their cor-
responding power transmission levels. The simulation results
are close to the optimal and outperform a random placement
strategy.

A similar problem is studied in [13]. The authors propose
a wireless charger placement problem definition that takes
into account the electromagnetic radiation. The solution they
propose guarantees that the electromagnetic radiation levels
are safe for every location on the plane. The performance
of the proposed approximation algorithm is validated through
both simulation and experimentation.

The problem of computing the optimal number of readers
to cover an area with static or mobile RF-power harvesting
RFIDs is studied in [15]. The authors propose an analytical
model to determine the optimal distance between the readers.
The model is supported by simulation results.

Finally, the problem of optimally placing a charger for
clustered wireless sensor networks is tackled in [16]. The
feasibility of grouping the nodes in clusters, the maximum size
of the cluster, and its network lifetime are examined. Localized
as well as centralized solutions are presented to solve the
above mentioned problem. Simulation results show that the
network lifetime can be extended compared to traditional
communication schemes.

VI. CONCLUSION & FUTURE WORK

In this paper, we studied the problem of computing the
optimal number of chargers for a sensor network consisting
of RF-power harvesting and battery-free nodes. We showed
that the problem is equivalent to the set-cover problem which
is NP-Complete. We proposed a low complexity algorithm
based on the maximum clique computation. Simulation results
showed that our solution is faster than a state-of-the-art greedy
set-cover approach while it does not perform far from the
optimal.

In the future, we intend to evaluate the proposed solution
using a real experimental environment and assess the impact
on the number of chargers of a noisy environment as well as of
different packet rates per sensor. Part of our future research is,
also, to involve sensors with controlled mobility and compute
the minimum number of chargers as well as the optimum
exposure path of the nodes based on their energy demands.
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