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Abstract

In the last few years, a particular interest in using wireless technologies in the industrial domain in order to automate
processes and increase the level of safety has been noticed. This paper introduces an affordable mobile system to
notify railway workers in rural areas about the approach of trains, and thus, to enhance their safety allowing for
the early evacuation of repair sites located near the rails. The system comprises three key elements: a train device,
a portable station device, and wearable devices for the workers. The communication methods and the underlying
protocols between these components are discussed in detail. The system has been developed for freight trains of the
national railway company of Kazakhstan and has undergone extensive testing for each of its components before its final
trial. The preliminary results demonstrate that the system meets the requirements in terms of evacuation time, range,
and portability, while exhibiting a very low cost of manufacturing. More specifically, the system can achieve a reliable
communication range of several kilometers and a maximum response time of 2.3 seconds. The cost does not exceed $500
for a set of train, station, and 5 worker devices.
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1. Introduction

The transport of goods using railways constitutes an
easy solution to reduce freight costs without delaying their
delivery especially for long distance transports between
neighboring countries [1]. However, extensive railway paths5

are required to be built and maintained throughout huge
territories. The maintenance of railways in remote areas
poses risks due to the lack of permanent infrastructures in
those areas and the possible presence of extreme weather
conditions [2]. EU statistics have shown that 1389 sig-10

nificant railway accidents took place and 683 people were
found deceased, and 513 people were injured1. Thus, the
importance of improving the safety methods for people
working along the railroad about the incoming trains is
rising. Sometimes, the deployment of permanent systems15

is not feasible because of the high cost, mainly in countries
spanning large geographical areas. Kazakhstan is an ex-
ample of such countries having a huge territory with very
few people living between major cities. Hence, the devel-
opment of permanent infrastructures is not an easy task20

for many reasons. The aim of this research is to propose a
cost-effective, portable, and long-range notification system
that can alert workers operating on or near railway tracks
about the approach of trains.
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Figure 1: An example of a use-case scenario.

The system has been specifically designed for the na-25

tional railway company of Kazakhstan and it is planned
to be deployed in 2024 with a primary focus on freight
trains that operate at average speeds not exceeding 50-60
km/h. However, modifications can be made to be adjusted
to other use-cases as well. It is important to note that30

the proposed system is designed to complement perma-
nent signaling systems in areas where currently there is no
coverage by one of those systems. A scenario example il-
lustrating the system’s functionality is depicted in Figure
1. In this scenario, workers need to evacuate the repair35

site before a train arrives. The evacuation process may
take several seconds as machinery and equipment need to
be cleared. Consequently, it is crucial for the workers to
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be notified before they can visually spot the approaching
train. For instance, if the train is traveling at a speed of40

60 km/h and the required evacuation time is 1 minute,
the workers should be alerted when the train is at least
one kilometer away from the repair site. This ensures that
they have sufficient time to evacuate safely.

The proposed system comprises multiple components,45

each serving a specific function, as outlined in Section 3.
To enable wireless communication, the system employs
modern radio technologies, LoRa and ESP-NOW, using
connection-less protocols. The former was chosen due to
its advantageous characteristics, including long communi-50

cation range, low cost, and high configurability. Addi-
tionally, ESP-NOW was selected for its compatibility with
ESP32 devices, low cost, and ease of use.

To validate the effectiveness of the proposed mecha-
nisms, the solutions were implemented and tested on real55

hardware. The designed prototype is a combination of
commercially available equipment and custom-made de-
vices. Importantly, the cost of implementing the proposed
system amounts to less than $500, making it an afford-
able solution for any railway company in comparison with60

an ad-hoc TETRA radio system, which is currently used
by many railway companies. For example, a set of two
TETRA terminals is over $1500 without including other
infrastructure costs.

The proposed system offers the following benefits: (a)65

cost-effective development and maintenance, (b) the abil-
ity for portable and ad-hoc deployment, (c) independence
from pre-existing network infrastructure, (d) an individ-
ual worker notification mechanism through wearables, (e)
notifications through both audio and vibration on wear-70

ables, (f) extended wearable battery life through a custom
synchronized method, (g) support for up to four trains si-
multaneously, and (h) visualization of repair sites using
Android and web applications.

In our previous work [3], we presented the general ar-75

chitecture of the system along with some early stage re-
sults. In this extended version, we briefly present the func-
tionalities of the system with an emphasis on the communi-
cation aspects between the components as well as on their
experimental evaluation. More specifically the following80

material is added:

1. A Machine Learning model is proposed and tested
to estimate the distance between the station and a
train when GPS data is not available.

2. The mathematical analysis for the case when the85

train coordinates are not available is extended tak-
ing into account the probability of receiving a beacon
from the station device.

3. A multi-hop synchronized flooding mechanism based
on ESP-NOW is extended to enhance the reliability90

and the battery lifetime of the wearable devices.

4. More detailed and accurate experimental results are
presented for each of the components of the system.

The rest of this paper is organized as follows. Section
2 surveys and categorizes related railway notification sys-95

tems suggested in the literature. Related work on distance
estimation using LoRa is also presented in that section.
Section 3 presents the proposed architecture and gives de-
tails about the functionalities of each component. Section
4 is devoted to the performance evaluation of the system100

using field experiments. Finally, Section 5 draws conclu-
sions and ideas for future work.

2. Related Research

This section encompasses a discussion and a catego-
rization of existing railway notification systems for differ-105

ent safety applications but it also surveys related works in
the area of distance estimation using LoRa.

2.1. Related Railway Notification Systems

The proposed railway notification systems mainly in-
volve stationary beacon devices sending data from sensors110

via cellular networks, or a set of AI-powered (Artificial In-
telligence) visual and/or acoustic devices that detect ob-
jects, abnormalities, and moving vehicles. The following
subsections provide a categorization of these approaches
into visual, acoustic, and systems employing other types115

of sensors.

2.1.1. Visual systems

Visual surveillance with Computer Vision (CV) models
is used for a vast range of applications, mainly involving
human movement detection. The CV approach enhanced120

with AI for similar railway surveillance applications has
also been investigated by researchers in the literature.

Leone et al. [4] proposed the use of an ARM-powered
board equipped with a night vision camera to detect insta-
bilities leading to landslides and other obstructions – for125

example people – on the rail tracks. The results showed
that rocks falling on the railroad and passing people are
clearly seen on the tracking area of the device.

Systems that detect objects in railways have been pro-
posed for more than a decade. Oh et al. [5] presented a130

system consisting of an array of cameras each of them cov-
ering up to 20 meters of tracks. Upon successful detection
of a person on tracks, the control room of the station is
alarmed. The authors do not specify what kind of com-
munication system is used for alarming the station staff.135

In a similar context, Alessandretti et al. [6] developed a
system used for vehicle detection on the road, a system
that could be used for train detection as well. On the con-
trary, instead of detecting specific objects on the railroad,
the system proposed by Mukojima et al. [7] detects only140

foreign objects on the railway, using a subtraction tech-
niques by comparing actual frames to reference frames,
eliminating the need to train a ML model on vast types of
objects.
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A CV approach was also followed by Sikora et al. [8].145

In their system, called AISS4RCT, a set of powerful boards
send detection data with an achieved average recall of 89%
by using the YOLO model. Their system is able to eval-
uate the state of the traffic lights on the crossroads and
the position of a railroad barrier. These abilities enable150

AISS4RCT to be used for regular traffic, as well as for the
railroad junctions, and thus, enhance safety.

The latest monitoring techniques often utilize Light
Detection and Ranging (LiDAR) technology, which offers
a significant advantage due to its long detection range.155

However, drawbacks of LiDAR equipment are its large size,
high cost, as well as being vulnerable to extreme temper-
atures and precipitation such as ice and snow. Some addi-
tional drawbacks include the need for a permanent network
infrastructure, the potential for negligence in supervision160

as discussed by Baysari et al. [9].
Taking this a step further from typical camera-only and

LiDAR-only approaches, Zhangyu et al. [10] proposed a
system that combines both a camera and a LiDAR com-
ponent. LiDAR is complimenting the depth-perception165

capabilities of the system, which regular camera modules
cannot provide. This fusion method allowed their model
to outperform other systems that use only one of the two
components.

Even though many of the aforementioned systems seem170

to work well in real conditions, they either require per-
manent infrastructure near the rails or their cost is high.
Moreover, some of them require seamless power supply
and the presence of specialized personnel to operate the
system.175

2.1.2. Acoustic systems

Apart from the visual inspection, acoustic data can also
be used to enhance railroad safety. Acoustic methods for
accident prevention employ sensors that detect noise and
vibrations either on the rails or in close proximity to them,180

as explained in the study of Sato et al. [11]. Microphones
in the system are fixed near the railroad and are used to
collect ambient noise coming from approaching trains. Us-
ing logistic regression they achieved a high accuracy with
an F-score of 0.987.185

Acoustic analysis of the ambient noise is an approach-
able nearly non-intrusive way to detect passing vehicles,
as it was also shown by Ishida et al. [12]. The authors
exploited the difference in noise profiles of two identical
microphones placed at different distances to define the di-190

rection and the speed of the vehicle using the sound map-
ping technology, achieving an F-score of 0.92. Considering
the simplicity and structure of the system, it is highly mo-
bile, and can be relocated if required.

A more recent development in this field is the Dis-195

tributed Acoustic Sensor (DAC) technology, which makes
use of fiber optics as exceptionally receptive sensors for
detecting vibrations and acoustic signals associated with
train arrivals. Dumont et al. [13] describe a system that
uses fiber optics and the principle of Rayleigh Backscatter,200

by sending laser light pulses and capturing the refracted
light. To analyze data obtained from DACs, the authors
came up with a deep learning approach, whereas Milne
et al. [14] decided to follow a mathematical approach to
use the phase-sensitive Optical Time-Domain Reflectom-205

etry (φ-OTDR) interrogation. Overall DAC solutions are
very effective in terms of latency, data-rate and accuracy,
however, they require a fiber cable to be deployed across
the entire railway which is cost- and labor-inefficient.

2.1.3. Other systems210

Since AI-based approaches often involve powerful ma-
chines and expensive equipment, there are attempts to
build systems without using AI. Accelerometers were used
in systems proposed by Khivsara et al. [15] and Shrestra
et al. [16], although these sensors were used differently215

in these papers. In the case of the train-mounted system
designed by Khivsara et al., the accelerometer is used to
determine the state of the train, whether it is stationary
or moving. In the case of an abrupt deceleration or long
inactivity, a message is sent using a GSM radio technol-220

ogy (Global System for Mobile Communications). On the
contrary, Shrestra et al. [16], connected an accelerome-
ter to the rail track, reading the vibration data caused
by approaching trains. Additional sensors are installed
on tripods several meters away from the track, to gather225

speed, direction, length, and other information about the
train approach characteristics. This information is sent
to the maintenance teams located not very far from the
sensor system. The solution does not require a permanent
infrastructure, but the deployment of the system is not in-230

stantaneous. Preliminary installation of the sensors near
the railway is required.

In [17], Jain et al. express their concern of accidents
happening due to human error, and by eliminating it,
they proposed a system aimed to increase safety of railway235

crossings. The authors proposed an infrared (IR) sensor
system to determine if a train passed a certain stationary
point. This information is then forwarded to an actuator
to open or close barriers.

Fu developed their train approach notification system240

using GSM-R (Global System for Mobile Communications
– Railway) and GPS functionality [18]. Since the data is
sent to a remote server, it can be accessed anywhere. It is
highly efficient, but requires an existent GSM-R network,
which may not be always available.245

In general, the above-mentioned systems are mostly
stationary and rely on the use of existing infrastructures,
such as a cellular network (e.g., GSM). Our proposed sys-
tem is designed to be ad-hoc without requiring permanent
access to external networks.250

2.2. LoRa-Based Distance Estimation Models

LoRa-based distance estimation models leverage the
Long Range (LoRa) communication technology to accu-
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Figure 2: Overview of the system components and basic communication steps.

rately measure distances between devices in a wireless net-255

work. These models utilize characteristics of LoRa signals,
such as received signal strength (RSS) and airtime, to esti-
mate the spatial separation between nodes. By harnessing
the low-power, long-range capabilities of LoRa, these dis-
tance estimation models find applications in various fields,260

including smart agriculture, asset tracking, and smart city
environments. However, as it can be observed by the fol-
lowing paragraphs the conclusions are mixed, even though
more studies favor the use of ML models compared to path-
loss ones.265

The first study by Dieng et al. [19] introduces a dy-
namic RSS-distance mapping for animal herd localization
using collar devices. It employs LoRa beacons and GPS-
equipped nodes, utilizing a log-distance path-loss formula.
The Root Means Squared Error is reported to be 0.77 me-270

ters.
Rademacher et al. [20] explore path-loss models in ur-

ban conditions, favoring the log-distance model over ter-
rain models. DeepLoRa, proposed by Liu et al. [21], uti-
lizes deep learning and satellite images for long-distance275

path-loss prediction. However, its reliance on expensive
multi-spectral images poses challenges.

Radeta et al. [22] assess LoRa network performance in
marine environments, employing gateways and end-nodes
on sea vessels. Demetri et al. [23] combine SVM and280

path-loss models with multispectral images for link quality
estimation, using the Okumura-Hata model.

Lam et al. [24] propose two LoRa localization algo-
rithms using the log-distance path-loss model in urban set-
tings. Anjum et al. [25] compare positioning models, with285

the smoothing spline model showing the highest accuracy
outdoors. Islam et al. [26] propose ML distance-mapping
using RSSI, SNR, and SF parameters, achieving the best
accuracy with the random forest model.

Finally, Carrion et al. [27] compare ML models (RFR,290

NN, LSTM) using simulated RSS-GPS coordinates, ac-
knowledging differences from real data. These studies col-
lectively explore diverse approaches to enhance localiza-
tion and path-loss modeling in various environments, each
with its unique challenges and innovations.295

3. System Architecture & Functionalities

In this section, we provide an overview of the proposed
system architecture and its components, with a main focus

on the communication aspects between these components.

3.1. System Overview300

A simplified representation of the system is depicted
in Figure 2. The system consists of three components:
the ad-hoc station, the train, and the worker components.
Additionally, an optional back-end system is included to
facilitate the interconnection between the components and305

provide connectivity to an external network. The back-
end system’s external network is employed only when an
Internet connection is accessible, while it is not necessary
for the workers’ notifications. More details about the back-
end system are provided in [3].310

A general description of how the system works is given
below, while each of the system’s components is described
in more detail in the following subsections. It is impor-
tant to note that, for simplicity, the discussion assumes
the presence of a single station device, although multiple315

stations may exist at the same time.
The station initiates periodic transmissions of beacons

to broadcast its location and notify incoming trains about
its presence. Upon receiving these packets, trains respond
by providing their own coordinates, their speed, and their320

direction. The station receives these individual responses
and calculates the estimated arrival time of each train.
This information is then forwarded to the workers’ wear-
ables, allowing them to be notified about approaching trains.
As it is depicted in Figure 1, the devices on trains can also325

provide a real-time visual notification to the train oper-
ators by forwarding received station location to onboard
equipment (tablets).

3.2. The Portable Station component

In order to gain a deeper comprehension of the train330

and workers components, we will commence by elucidat-
ing the portable station component which functions as an
intermediary linking these two elements.

The station component consists of two Micro-Controller
Units (MCUs) and a positioning system module such as335

GPS. The first MCU is responsible for the communication
with the train component over the LoRa technology, while
the other MCU handles the communication with the work-
ers component, employing ESP-NOW (or WiFi). They are
connected with each other via an Inter-Integrated Circuit340
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Figure 3: The station beacon packet format.

(I2C) link. The presence of two MCUs is practical and al-
lows for flexibility and seamless connectivity between mul-
tiple components of the system. The station device can
be powered by batteries or a support vehicle. It exhibits a
low power consumption which allows seamless operation of345

several days with a typical 10Ah powerbank. Throughout
this paper, it is assumed that the station is not an energy
constrained device.

The train and station components exchange GPS coor-
dinates to estimate the arrival time and notify the workers.350

The first MCU of the station periodically transmits bea-
cons to broadcast its location. The format of the beacon,
as shown in Figure 3, includes an encrypted payload using
the keys that were shared preliminary. A train receives
the beacon from the station upon entering its working355

range, and then responds with its own packet of current
GPS coordinates along with the speed and the direction.
The great-circle distance is then calculated based on the
GPS locations of both devices using the Haversine formula.
Each station has the capability to support up to four trains360

simultaneously approaching from different directions. To
prevent collisions in scenarios where multiple trains exist
in a station’s neighborhood at the same time, one out of
four timeslots is chosen after receiving a beacon. The se-
lection of a timeslot is described in the next subsection.365

Upon receiving the data from the train, the station’s
first MCU uses the train’s response data to estimate the
train’s arrival time. If no positioning data is available, the
station device estimates the position using the response
RSS value. By employing one of these methods, the sta-370

tion component can provide workers with timely informa-
tion about the approaching train, enabling them to take
appropriate safety measures.

3.2.1. Machine Learning distance estimation model375

As it was mentioned in the previous paragraph, the
RSS value of the response packet is employed in the case
where the train packet does not contain positioning data
or if the data is corrupted. The estimation is not of critical
importance because the workers will evacuate the site any-380

way once they receive a message from the station device.
However, it can be used as a metric to identify the speed
of the train – and thus its arrival time – when positioning
data is not available.

In this scenario, we leverage ML to automatically map385

the RSS to an estimated distance. The reason of using ML
is to better adapt to the deployment conditions in terms
of terrain type compared to the conventional method of
approximating the distance using mathematical equations

Figure 4: Dependency between natural logarithm of distance and
Received Signal Strength.

that represent the actual path-loss [28, 3]. In such a model,390

the distance is calculated by a mathematical formula where
it is necessary to know the path-loss exponent, the refer-
ence distance, and the path-loss at that distance. These
three parameters can be learned experimentally but the
model would work only for the specific conditions under395

which the experimental data was collected [29].
In our approach, using experimental data from differ-

ent conditions, we can select ML coefficients that can map
the RSS value and the information on the terrain type to
distance, minimizing the error of predictions. Similar ap-400

proaches have been followed in the literature [21, 30]. The
system can autonomously identify the surrounded terrain
type and adapt the model accordingly by loading the cor-
responding coefficients that are closer to the identified ter-
rain type. The identification of the terrain is done using405

pre-loaded maps on the station device and the “Corine
Land Cover” functionality of a Geographical Information
System. How this system works is out of the scope of
this paper. Currently, 3 types of terrains are supported;
0 for Line-of-Sight (LoS) and no obstacles, 1 for LoS and410

few obstacles (e.g., people and short trees), and 2 for non-
LoS and severe obstacles (e.g., hills, buildings, high trees,
forests).

To decide about the ML coefficients, the data is split in
80-20 proportion on training and testing sets. Then, the415

parameters of the Ordinary Least Squares Linear Regres-
sion model are calculated on the training set. To evaluate
how well the model performs on the training data, we ob-
tained its prediction on the test set and calculated the
Mean Absolute Percentage Error (MAPE) [31].420

To tackle the skewness of data Quantile Regression is
employed, which goes beyond predictions of the mean val-
ues and allows targets and the features to vary across the
conditional quantiles of the data distribution [32]. This
is needed in order to better fit the median of our data.425

As a result, the trend among RSS-distance points can be
modeled using a third degree polynomial function, as it
can be seen in Figure 4. Using Quantile regression and
polynomial features, MAPE is reduced to 17.25%. Apply-
ing this model to the training data for terrain type 1, we430
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Figure 6: The train selects the timeslot based on its direction relative
to the station. An illustrative example of all slots being occupied.

get an average error of 120 meters. The model’s efficiency
is further assessed in Section 4, where we do experiments
using different distances between the station and the train
devices that were not used for training the model.

435

3.2.2. Application layer

The second MCU of the station can alternatively be
used as a WiFi access point to connect Tetra network ter-
minals (see Figure 5). Tetra networks are usually used
by railway companies to provide intercommunication be-440

tween trains and stations but they require a permanent
infrastructure. In cases where a Tetra terminal is avail-
able in the workers team, the administrator can set the
station device to send the alerts to a Tetra device instead
of the workers’ wearables. An Android app running on445

those terminals has been developed for this purpose. The
same app can also be used to visualize the train positions
on the TETRA terminal.

3.3. The Train component

The train component is a sub-system that responds to450

the beacons transmitted by the portable station but it can
also communicate with train operators using another An-
droid application which can alert train operators about
the approach to nearby repair sites [3]. The communica-
tion functionalities of the train component play a crucial455

role in the overall system, as explained in the following
paragraphs.

The train’s response packet follows a similar format
with the station beacon. The only difference is that the
train speed and the direction are also included in the re-460

sponse packet along with the GPS coordinates. This in-
formation is encrypted using pre-shared keys and it is put
together with a unique train identification number and the
payload length, as depicted in Figure 9. Before responding
to the station, every train must determine which timeslot465

should be selected to transmit the packet. The selection
process relies on the direction of the train’s movement, in
a clockwise order as shown in Figure 6. For instance, a
train moving from southwest would choose slot 0 and a
train coming from northwest would choose slot 1. The470

system is designed for rural areas far from stations where
up to 4 trains can arrive at the same time, even though 2
trains would be enough for most of the countries2. Thus,
we consider a worst case scenario as with four tracks of
trains coming from different directions. Because trains are475

coming from four directions, it is safe to assume that 4
slots based on the cardinal directions (N-E-S-W) will be
sufficient.

The length of the window slot is determined by the
LoRa settings and the number of transmitted bytes. For480

example, with 18 bytes of payload and SF10 taking into
account some clock drift and processing time, a timeslot is
approximately 350 milliseconds long. Therefore, from the
moment the train receives a beacon, the communication
delay cannot exceed 1.75 seconds.485

3.3.1. Multi-slot probabilities

In situations where the train’s coordinates cannot be
obtained, such as due to malfunctions or adverse weather
conditions, the response packet will contain null coordi-490

nates and will randomly select one timeslot at random
from a set of N slots, where N > 4. The additional slots
are used to reduce the probability of collision when two
trains choose the same slot. As shown in the analysis be-
low, if additional slots are used, this probability reduces495

2It is worth noting that the proposed system does not account
for acute crossings, as these are uncommon in the rural areas where
the system is intended to be deployed. These scenarios are primarily
located close to train stations that are already covered by regular
networks, making the proposed system unnecessary in those cases.
However, even if this happens, the probability of packet collision is
extremely low because one of the two train responses will still be
received by the station and the railway will be evacuated anyway.
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(a) t = 1 (b) t = 5 (c) t = 10

Figure 7: Probability of “receiving a station beacon, any single train does not select the same slot, and the response is received at the station”
for different α values (probability the GPS is unavailable), γ1 values (probability a station beacon is received, number of received beacons
(t ∈ [1, 5, 10]), and N = 5 (timeslots).

(a) t = 1 (b) t = 5 (c) t = 10

Figure 8: Probability of “receiving a station beacon, any single train does not select the same slot, and the response is received at the station”
for different α values (probability the GPS is unavailable), γ1 values (probability a station beacon is received, number of received beacons
(t ∈ [1, 5, 10]), and N = 10 (timeslots).
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Figure 9: The train response packet format.

substantially. The number of additional slots that could
be reserved depends on the speed of the train and how
often the beacons are transmitted. However, it is always
important to use the minimum possible slots to reduce the
maximum response time in the system.500

Using the analysis shown in [3] and assuming a con-
stant train speed, the probability of a response packet not
colliding with other packets after t beacons (t ≥ 1) is:

P(t) = 1−
(
1− P(1)

)t
. (1)

This is because every transmission period represents a

unique occurrence, implying that the likelihood of a non-
collision event in two separate periods is unrelated. Conse-
quently, the probability of encountering at least one colli-
sion in t transmission periods can be calculated as t multi-505

plied by the complement of the probability of no collision,
which is (1− P(1)).

Note that the probability of selecting a single timeslot
without collisions (i.e., P(1)) is linearly dependent to the
average probability of receiving a beacon by a train within
a fixed time period (denoted with γ1), the probability of
selecting a slot that does not collide with other packets
(denoted with A), and the average probability of success-
fully receiving the response at the station within a fixed
time period (denoted with γ2). As the train is moving to-
wards the station, γ2 ≥ γ1. Thus, P(1) is computed as
follows:

P(1) = γ1 · A · γ2 ≥ γ2
1 · A, (2)

where A is given by the following formula for N available
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slots:

A =
3α2 − 6α

N
+

9α2 − 6α3

N2
+

3α4 − 4α3

N3
+ 1, (3)

where α is the probability that the coordinates are not
available.

Figures 7 and 8 illustrate P(t) for various combina-510

tions of received beacons, α, and γ1 values when N=5
and N=10, respectively. We can observe the increase of
success probability as the number of slots increases. More-
over, it is noteworthy that the probability with just one
received beacon (i.e., P(1)) is relatively low. However, as515

the number of received beacons increases, this probability
approaches 1.

To illustrate that, let us consider an example scenario
where (i) trains can receive beacons up to a maximum dis-
tance of 2 kilometers from the station, (ii) time constraints520

allow the last beacon to be received within 1 kilometer
from the station, and (iii) the beacon rate is set at 1 bea-
con every 5 seconds. In this scenario, a train can receive a
maximum of 12 beacons within the specified time period
(i.e., 60 seconds assuming a train speed of 60km/h). As-525

suming that the average packet reception rate in that time
period is 83.33% and α is 1 for all trains, the probability
tends to 1. Apparently, the example can be adapted to
other scenarios given a different speed of trains and bea-
con rates.530

3.4. The Workers component

The system assumes that the wearable devices are se-
curely fastened to the wrists of all or some of the work-
ers at the repair site. The wearable device comprises an
MCU with an IEEE802.11 transceiver, an OLED display,535

a beeper, a vibration motor, and a power unit. Techni-
cal design details of the wearable devices are shown in
[33]. The wearable devices receive notifications about ap-
proaching trains from the station device and notify the
worker through haptic mechanisms. A beep speaker gen-540

erates short repeating beeps to indicate the proximity of
the train, while the vibration motor provides notifications
through vibration. The device display shows the direction
and the arrival time of a train. The focus of this paper is
on the communication part between the station and the545

wearables.

3.4.1. The Always-on approach

The train arrival data is promptly transmitted to the
workers’ wearables using an ESP-NOW-based protocol.
The primary goal of this protocol is to ensure a high level550

of reliability (>99% delivery ratio) for all devices. The
objectives of the protocol are (a) to minimize the response
time once a train is detected, (b) to provide high reliabil-
ity, and (c) to exhibit a battery life of a full working shift
(8-9 hours). The first objective is achieved by allowing555

the wearable devices to continuously be in listening mode,
enabling them to receive incoming packets without delay.
This ensures that workers are promptly notified as soon

as a train’s response is received, facilitating timely and
efficient communication within the system. The second560

objective is achieved using successive retransmissions and
a multi-hop mesh network. This functionality is described
in the next paragraphs. The third goal is demonstrated in
Section 4, where we show that the wearable can achieve a
lifetime of approximately 10 hours in the Always-on mode.565

As depicted in Figure 10A, we employ a mesh architec-
ture together with multiple successive transmissions and
multi-hop flooding. More specifically, each packet initi-
ated by the station is sent k consecutive times. Once a
device receives a packet from the station, it switches to570

transmit mode, and it forwards it to other devices within
its range (also k times). As it is shown in Section 4, this
action does not have any effect on the energy consumption
as only 1ms of time is required for a couple of additional
transmissions while the additional communication cost is575

not high either. By employing this multi-hop forwarding
mechanism, the protocol enhances the overall reliability
and coverage of the communication system allowing even
distant devices to reliably receive beacons. Moreover, it
provides an additional opportunity for devices that may580

miss the station’s packet to receive it from other nearby
devices. The number of maximum hops n is decided based
on the application requirements in terms of coverage and
reliability.

3.4.2. The Synchronized ESP-NOW approach585

Sync-ESP-NOW [34] is proposed as a synchronized 2-
hop mechanism to enhance energy efficiency by allowing
the end-devices to stay in deep sleep mode for some period
of time. The approach works over the ESP-NOW link layer
developed by Espressif for IEEE802.11 transceivers and it590

is quite popular for connection-less peer-to-peer commu-
nications in industrial and home automation applications
[35, 36]. The purpose of using Sync-ESP-NOW in this
project is to provide an alternative solution for scenar-
ios that may require much higher battery lifetime than595

the Always-on approach. In Sync-ESP-NOW, the station
broadcasts packets in a synchronous way and in short pe-
riods, allowing the wearable devices to spend some time in
deep sleep mode and wake up in predefined time intervals
to receive data.600

In this paper, Sync-ESP-NOW is extended to allow
devices to send up to k successive packets over n hops.
The frame format is changed radically compared to the
previous version in order to accommodate these two func-
tionalities and it is presented in Figure 10B. The station605

transmits periodic beacons containing train information
as depicted in Figure 10C. The packet contains several
fields, including the sequence number, which serves as a
unique identifier for the transmitted packet. The most re-
cent sequence number is stored by each end-device to avoid610

processing duplicate downlinks. The maximum number of
packet forwardings by the wearable devices is represented
by the Time-To-Live (TTL) value. Initially, it is set to
n at the station, and upon reception, each receiver decre-
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Figure 10: (A) The multi-hop functionality of the approaches. Each unique packet is transmitted k consecutive times and it is forwarded to
all neighbors up to n times. (B) Timeframe of Sync-ESP-NOW at different hops; (C) Packet format of the approaches.

ments it by 1. If the TTL of the packet is greater than615

0, it is then forwarded to other devices within the range.
Additionally, there is an option to encrypt the packet pay-
load with pre-shared keys, providing an additional layer of
security for the transmitted data.

The wearables use these beacons for clock synchroniza-620

tion purposes as well. Hence, the station transmits such
a packet regardless the presence of a train. If no train
is approaching, a train id equal to 0 is used, followed by
null data for the arrival time, the distance, and the direc-
tions. Synchronization is achieved by allowing the devices625

to wake-up some milliseconds earlier than the expected
transmission time (guard time). The guard time is used
to compensate for any clock drift. The amount of time
the radio stayed on compared to the arrival of the bea-
con, determines the clock correction that is applied. Each630

wearable stays in receive mode (rx) for a max predefined
time (max radio-on time in Figure 10B). Once it receives a
beacon it checks the TTL value and it switches to transmit
mode (tx) to forward the beacon to neighboring devices.
The max radio-on time is a function of k, the guard time,635

the radio mode switch time, and a random time used to
mitigate overlaps of neighboring transmissions. Assuming
that each beacon is about 20bytes long, k = 3 (tx time =
4ms), a guard time of 40ms, a switch time of 5ms, pro-
cessing time of 10-20ms, a max random time of 1ms, and640

n=3 hops, the longest time a device can spend in receive
mode is 180ms (40+(3-1)(40+20+4+5+1)). If the device
does not receive a beacon within this time limit, it adjusts
its sleep time accordingly to receive a beacon in the next
round. Two successive synchronization fails cause the de-645

vice to switch to the ‘Always-on’ mode until it receives one
of the next beacons.

Table 1: Experiment Parameters & Radio Settings
Parameter Value
Train/Station/Wearables devices 2/1/8
LoRa Spreading Factor 10
Radio channel (duty cycle) 869.525 MHz (10%)
Channel bandwidth 125 kHz
Code rate 4/5
Preamble symbols 10
Transmission power 14 dBm
Station packet length 18 Bytes
LoRa Explicit header / CRC No / No
ESP-NOW Mode LR (250 Kbps)
Wearable packet length 17 Bytes
Wearable transmissions (k) 1 and 3
Time-To-Live (N) 1 and 2
Guard time 35ms
Encryption AES-128
Sync-ESP-NOW delay 5 sec

Sync-ESP-NOW achieves up to 96% lower energy con-
sumption compared to the always-on approach but it adds
some delay to the notification of the workers. The delay650

depends on how often the wearables wake up to receive
data from the station. The longer the sleep time, the
higher the energy savings but the longer the delay. How-
ever, as it was shown in [34], even a second of sleep time
can extend battery lifetime by more than 300%.655

4. Evaluation & Discussion of the results

The proposed system was implemented on open hard-
ware using ESP32 devices and detailed schematics are pre-
sented in [33]. The system underwent a comprehensive
evaluation, both as a unified system and as individual660

components. In order to present the results effectively,
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Table 2: Packet Delivery Ratio of the Station-Train communication
at different distances.

Distance Avg. RSS PDR Repeated
(m) (dBm) (%) Losses
500 -102.74 98.8 1
1000 -119.93 96.4 2
1750 -121.54 81.4 3

the evaluation outcomes are provided separately for each
component. The parameters used in the experiments are
summarized in Table 1, outlining the key variables and
settings employed during the evaluation process.665

4.1. Station-Train Link

The evaluation of the train-station communication in-
cluded multiple field testings. They were conducted using
one station and two train devices across an open space
spanning a few square kilometers. The geographical fea-670

tures consisted mainly of optical contact between devices
but with the presence of light obstacles such as tree leaves
and people. The experiment’s primary objective was to de-
termine how different environmental conditions affect the
path loss.675

The results indicated that the maximum effective range3

that was achieved was 5.7 kilometers with LoS. In scenar-
ios where LoS was obstructed, such as in areas shadowed
by buildings or within forests, the range was limited to no
more than 500 meters. In those situations, an intermedi-680

ate device as the one presented in [16] must be placed not
far from the station to act as the repeater or the station
must be elevated with the help of wired drones [37] or bal-
loons [38]. These solutions are being investigated but are
currently out of the scope of this paper.685

Table 2 displays selected results obtained under LoS
conditions with the presence of light obstacles. The find-
ings reveal that even at a distance of 1.75 kilometers, the
Packet Delivery Rate (PDR) remains acceptable, with only
3 instances of successive packet losses at worst case. For690

example, given a beacon interval of 5 seconds, a train speed
of 60km/h, and one minute evacuation time, a train can
receive more than 10 beacons per km. Thus, even with 3
successive losses, the station will finally receive a response
from the train before the hard constraint of 1 minute (or695

1 km). These results also demonstrated the system’s abil-
ity to maintain a reliable communication even when faced
with moderate obstacles in the transmission path and over
significant distances.

The system was also tested for its response time which700

corresponds to the round-trip time between the station
and the train plus extra processing time at the station
before forwarding the packet to the workers. The results
are depicted in Table 3 and reveal – as it was expected –

3We consider a range as effective if it exhibits a packet success
rate of at least 66.7%.

Table 3: Response time results when the number of timeslots is 5
(N=5).

Slot number
Response time (sec)
Average σ

0 0.904 0.009
1 1.211 0.011
2 1.560 0.007
3 1.911 0.008
4 2.260 0.007

Table 4: Machine Learning model distance estimation results.
Distance Path loss σ RSS Model δ to real MAPE

(m) (dB) (dBm) (m) distance (m) (%)
100 76.45 3.77 148.65 +48.65 48.65
500 103.657 4.36 506.97 +6.97 1.39
1000 131.186 3.64 1239.87 +239.87 23.99
1200 131.08 2.12 1197.33 -2.67 0.22
1400 129.95 2.51 1131.55 -268.45 19.18
1500 134.71 2.51 1521.44 +21.44 1.43
1600 136.542 2.29 1712.99 +112.99 7.06
1750 135.155 1.65 1547.64 -202.36 11.56

a linear increase of the response time. The worst response705

time was measured at approximately 2.3 seconds.

4.2. Machine Learning RSS model performance

To ensure that workers are notified for incoming trains,
regardless of any potential GPS malfunctions or packet
corruption, an RSS model was developed using Machine710

Learning methods discussed in Section 3.2. A number of
experiments were conducted to collect data and train the
model as it was described in Section 3.2. In every setup,
500 packets, each consisting of 20 bytes, were transmitted
from the station device to the train device and the RSS715

values were recorded. All experiments were conducted on a
flat terrain in Kazakh steppes with a few obstacles present
between the receiver and the transmitter (terrain type 1).
The distance computed by the model was compared to the
real distance. Mean Absolute Percentage Error (MAPE)720

serves as a metric for assessing the model’s performance.
This error quantifies the percentage by which predictions
diverge from the actual values.

The results of these experiments are summarized in
Table 4. They show that the model predicts the distance725

with a maximum δ of approximately 270 meters , equating
to a deviation of 19.18% from the actual distance. How-
ever, the highest MAPE, nearing 50%, was observed for
a distance of 100 meters – the point at which the train
should be distinctly visible. Assuming our use-case sce-730

nario with a train speed of 60km/h, the highest absolute
deviation is translated to an error of maximum 17 seconds.
We can also observe that for distances above 1200 m the
model gives more accurate predictions than for ones below
this value. Also, since the model tends to underestimate735

distances, the deviation in terms of predicted and actual
time is not that huge.
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Figure 11: Wearable experiments site: dimensions, mobile positions,
and their corresponding RSS values.

Table 5: Packet reception ratio (PRR) and received signal strength
(RSS) for different positions and TTL values (1 transmission).

TTL Experiment
RSS (dBm) PRR (%)
Avg σ Total 1st hop 2nd hop

2

Always-on -80.65 8.06 99.95 88.0 12.0
Sync-

-80.81 1.23 99.46 87.2 12.8
ESP-NOW

1

Always-on -78.84 8.53 90.75 100 –
Sync-

-79.84 3.73 90.42 100 –
ESP-NOW

4.3. Station-Wearable Link

To test the station-wearable communication, experi-
ments were conducted in an outdoor environment of 1500740

square meters size, characterized by numerous light obsta-
cles including trees and people as it is depicted in Figure
11. The experiments were designed to assess and com-
pare the performance of the regular ESP-NOW approach
to the synchronized method, with the multi-hop forward-745

ing mechanism disabled or enabled. Moreover, in order
to test the effect of multiple successive transmissions, the
experiments were repeated with k=1 and k=3. Eight de-
vices – most of them mobile – were employed for these
experiments. Traces of one of those devices along with the750

corresponding RSS values are depicted in Figure 11.

Table 6: Packet reception ratio (PRR) and received signal strength
(RSS) for different positions and TTL values (3 transmissions).

TTL Experiment
RSS (dBm) PRR (%)
Avg σ Total 1st hop 2nd hop

2

Always-on -79.21 7.78 99.98 88.86 11.14
Sync-

-77.37 4.10 99.99 93.35 6.65
ESP-NOW

1

Always-on -82.05 5.87 98.18 100 –
Sync-

-80.53 5.73 95.73 100 –
ESP-NOW

Table 7: Average power consumption per round for different TTL
values (n) and successive transmissions (k).

Approach n k
Average power Received

consumption (mW) from hop

Sync-

1 1 18.0 1st
1 3 18.1 1st

2 1
20 1st

ESP-NOW 29.1 2nd

2 3
20.2 1st
31.8 2nd

Always-on 1, 2 1–3 533 1st, 2nd

The results can be found in Table 5 for k = 1 and in
Table 6 for k = 3. First of all, comparing the results of the
two tables, we can witness the effect of multiple successive
transmissions on PRR for the single-hop scenario. PRR755

increases from approximately 88% to more than 95%. Re-
garding the synchronized approach, the number of desyn-
chronizations was only 1. Moreover, looking at the two
tables individually, we can observe that even a second hop
is enough to provide an over 99.4% PRR. The last two760

columns reveal the high contribution of the second hop.
The multi-hop mechanism combined with multiple succes-
sive transmissions gives an almost 100% PRR for this series
of experiments.

4.4. Power Characterization765

A series of experiments were also conducted to as-
sess the amount of power required for the operation of
a wearable device but also to compare different modes of
operation. The power consumption was measured using
a power analyzer and the results are depicted in Table770

7. The results show an average power consumption of
533mW per round in the Always-on mode. A 1500mAh
battery can provide approximately 19000 Joules of en-
ergy. This is translated to almost 10h of lifetime (i.e.,
(19000/0.533)/3600). This number was later confirmed by775

an experiment, where a wearable device was periodically
receiving alerts every 30 minutes with a 2-min period of
continuous haptic notifications (visual, sound, and vibra-
tions) until it runs out of battery. The measured battery
life of the prototype exceeds the application requirements,780

as a typical work shift does not exceed 8-9 hours. By us-
ing Sync-ESP-NOW and a wake-up time of 5 seconds, it is
possible to decrease the average consumption to 18-32mW
(94% decrease), and thus, increase the battery lifetime to
4.5-5 days. However, as it was mentioned earlier in the785

text, this comes with an additional response delay of 5
seconds. Nevertheless, even an 1 second of sleep time can
significantly increase the lifetime of the wearable. The
sleep time can be adjusted according to the specific ap-
plication requirements and constraints in terms of delay.790

Figure 12 visually represents the power consumption of
the wearable device during various time frames (rounds)for
both Always-on (a) and Sync-ESP-NOW (b-f) at a random
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(a) n=1, k=1 (b) n=1, k=1 (c) n=2, k=1

(d) n=2, k=3, multiple rounds (e) n=3, k=3, 1st hop (f) n=3, k=3, 2nd hop

Figure 12: Always-On (a) and Sync-ESP-NOW (b-f) power consumption with variable combinations of TTL and successive transmissions.

round or rounds using different TTL values and succes-795

sive transmissions. The difference in power consumption
is clearly demonstrated. In Sync-ESP-NOW, the device
wakes up approximately 90ms before receiving the bea-
con, while some of this time is dedicated to boot up and
the rest to the guard time to compensate for any clock800

drift (mainly for the RTOS scheduler). This means that
the round duration is longer compared to ‘Always-on’ but
the device is in sleep mode for the rest of the time, thus,
spending the minimum possible energy. The beacon wait-
ing time of Sync-ESP-NOW is automatically adjusted in805

multi-hop scenarios (see figures (d, f)).

5. Conclusion & Future Work

In conclusion, this paper introduced a portable and
cost-effective signaling system designed to enhance safety
by notifying workers on the rails about approaching trains810

in remote areas lacking permanent network infrastructure.
The system leverages radio technologies and custom com-
munication protocols to facilitate reliable and efficient com-
munication. Initial experiments demonstrated promising
results in terms of reliability, minimal packet losses, and815

energy efficiency for the wearable device.
Future research endeavors will focus on expanding the

system’s capabilities through extensive experiments con-
ducted over longer distances and various terrain surfaces
apart from the light obstacles type of terrain. We will also820

explore the possibility of using tethered drones to expand
the coverage range of the system in hilly or forestry areas.
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