
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Y-Net: Insect Counting and Segmentation using 

Deep Learning on Embedded Devices 

Amin Kargar  

Tyndall National Institute  

University College Cork 

Walsh Scholar 

Cork, Ireland 

amin.kargar@tyndall.ie 

Dimitrios Zorbas 

School of Engineering & Digital 

Sciences, Nazarbayev University 

Astana, Kazakhstan 

dimitrios.zorbas@nu.edu.kz  

Michael Gaffney 

Horticulture Development Department 

Teagasc Ashtown Food Research 

Centre 

Dublin, Ireland 

michael.gaffney@teagasc.ie

Abstract— Insect pests can pose a serious threat to food 

production and agriculture in general and can cause substantial 

crop damage and economic losses. Monitoring insect pest 

populations is essential to control and mitigate these losses. 

Traditional monitoring methods are considered by growers and 

agronomists to be time-costly as well as labour-intensive tasks, 

which ultimately means that in times of high activity on farms it 

is a task which often is neglected. This study proposes an 

automated vision-based insect segmentation and counting 

approach through the use of deep learning (DL) models 

developed particularly for embedded systems. An image dataset 

for our target insect, Halyomorpha halys, was first created using 

images captured by our IoT-enabled image capture system 

deployed in a fruit orchard. Then, a Y-Net model inspired by U-

Net was developed with the capability of insect counting in 

addition to segmentation. The performance of this model was 

assessed using a variety of different metrics, and the results 

demonstrated the feasibility and effectiveness of the model in 

counting and segmentation of insects using Edge-AI algorithms 

capable of running on embedded systems. Based on the achieved 

results, the proposed Y-Net model achieved a Mean Squared 

Error (MSE) of 1.9 for the insect counting task, an Intersection 

over Union (IoU) of 84.5% and a Dice Similarity Coefficient 

(DSC) of 91.5% for the segmentation task, with an inference 

time of nearly 0.4 seconds on a smartphone. 

Keywords—Image segmentation, Object counting, Deep 

learning, CNN-based architecture, Insect monitoring, Precision 

agriculture. 

I. INTRODUCTION 

Insects have a significant impact, both positive and 
negative on different aspects of our lives despite their small 
size. Insect pests threaten our food security which is one of the 
primary basic needs for our society by reducing crop yields 
and crop quality. Annually, over 220 billion dollars in revenue 
are lost because of insect pests that destroy 40% of our crops 
[1]. A particularly damaging example of these insects is 
Halyomorpha halys (Hemiptera: Pentatomidae) (HH), which 
is an invasive shield bug native to east Asia, currently also 
existing in Europe causing €588 million losses to northern 
Italy orchards in 2019 [2], [3]. 

To reduce these losses, growers must visit and monitor 
their orchards regularly to recognize the presence of insect 
pest species and estimate the size of their populations. Then, 
this information is used to make decisions on the necessity of 

pesticide usage to reduce these populations, a process that 
needs to be as in frequent as possible. Therefore, early insect 
detection is critical since this improves the potential for good 
control of these pests and reduces the overall level of crop 
damage while also reducing the impact of pesticide usage on 
food quality and the environment [4]. This traditional style of 
insect monitoring typically requires a significant amount of 
time since growers must visit their orchards regularly, 
especially for large-scale orchards, and often needs a high 
level of taxonomical training to correctly identify insect 
species [5][6].  

In recent years, with the progress of Information and 
Communication Technology (ICT), several vision-based 
methods that benefit from machine learning techniques have 
been developed by researchers to effectively monitor insects 
in orchards [7][8][9]. These systems are deployed in orchards 
and by analysing the images of orchards, they provide the 
required information about the presence and the population of 
insects in the field to growers. Regarding the image analysis 
aspect, Deep Learning (DL) models are contemporary 
methods that have attracted significant attention in recent 
years to automate insect detection and insect counting in 
orchards [10].  

This study is part of a Horizon EU project named 
HALY.ID [11] whose aim is to monitor insects, specifically 
Halyomorpha halys, using innovative ICT tools. In this study, 
we proposed a new and accurate DL model to count and 
segment images containing the target insects, such as 
Halyomorpha halys (HH) in orchards. To achieve this aim, we 
first developed our insect image dataset collected using an IoT 
device [12] which was deployed in a pear orchard in Italy 
during the growing season in 2023. Then, an accurate CNN-
based DL model was proposed for insect segmentation and 
counting. The proposed model, named Y-Net, was inspired by 
the U-Net model [13] that counts the HHs on the image in 
addition to segmentation. In contrast to U-Net which just 
performs the segmentation task, Y-Net has two separate 
outputs from distinct parts of the network to count and 
segment HH insects on the input image. The segmentation 
output provides an image that separates foreground (the HHs) 
from the background, and the counting output provides a 
number representing the number of HHs on the image. These 
main contributions are summarized as follows: 
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• Y-Net model inspired by the U-Net is proposed for 
insect counting in addition to insect segmentation in 
one stage. 

• The model is a lightweight DL model suitable for 
edge-based systems running on embedded devices 
with restricted computational resources. 

The remainder of this paper is organized into four sections 
as follows: In Section II, some related works are reviewed. 
Section III describes the device which was deployed in the 
orchard to collect the dataset. The collected dataset and its 
features are also presented in this section. In Section IV, the 
proposed CNN-based model used for counting and 
segmentation is also introduced. Section V describes the 
results obtained from the model that was developed for 
segmentation and counting. Finally, Section VI presents 
conclusions and recommendations for further research in this 
area. 

II. RELATED WORK 

In recent years, researchers have used DL techniques in 
insect monitoring systems to develop more accurate and 
efficient insect monitoring systems. This section illustrates 
some general and common DL models used for insect 
monitoring and also some studies that specifically work on the 
target insects of this study.  

There are several previous studies that used object 
detection algorithms such as You Only Look Once (YOLO), 
regional-convolutional neural network (R-CNN), or Faster R-
CNN for insect detection. For example, Mamdouh et al. [14] 
proposed a deep learning model which is a modified version 
of the YOLOv4 to detect and count olive fruit flies in the 
images captured by the smart pheromone traps. Their 
modified YOLOv4 obtained a precision of 84%, a recall of 
97%, an F1-score of 90%, and a mean Average Precision 
(mAP) of 96.68%. Li et al. [15] proposed the TPest-RCNN 
model based on a Faster R-CNN to identify whiteflies and 
thrips in a greenhouse environment. They achieved an F1-
score of 0.94 and a mAP of 0.95 for the detection of whiteflies 
and thrips using the proposed model. Similarly, Wang et al. 
[16] suggested a new architecture for apple pests recognition 
and counting based on Faster R-CNN named MPest-RCNN. 
The authors also used the ResNet101 feature extractor to 
improve the recognition precision achieving 99.1% and 99.5% 
for mAP and F1-score, respectively. Bereciartua-Perez et al. 
[5] proposed a two-stage approach based on deep learning to 
count whiteflies on eggplant leaves using mobile devices. The 
proposed model first segmented the leaf and removed the 
background and then density map estimation was used for 
insect counting. In this study, MAE of 3.36, RMSE of 7.84, 
and R2 of 0.97 were obtained using the proposed two-stage 
method. 

In terms of our target insects, Halyomorpha halys, Dinca 
et al. [10] used YOLO models to detect the insects on images 
that were captured using a camera drone flying in an orchard. 
Two different versions of the YOLO, v5 and v8, were 
compared for performance and the results showed 94.6% 
accuracy for YOLOv8 and 90.9% for YOLOv5. In another 
study, Sorbelli et al. [17] proposed a YOLO-based model to 
detect this insect using drones in orchards. The author created 
a dataset captured using drones and other devices such as 
smartphones. They used the YOLO framework for insect 
detection and conducted a preliminary screening process on 
the dataset samples to improve the performance of the 

detection model. Several YOLO models and metrics were 
evaluated, and the testing results demonstrated precision of 
over 89% and recall of 73%. In both studies, the dataset was 
created using images captured from plants in orchards infested 
by the insect. However, Halyomorpha halys has a brownish 
colour which makes it easily blend and hide with the 
background elements in orchards, such as tree branches and 
trunks. This significantly impacts the detection algorithm, thus 
a more complex model is needed to detect and extract the 
insect feature from the complicated background. 

In this new study, we suggested using pheromone traps 
with a simple background to improve the image processing 
algorithm. This not only improves the detection accuracy but 
reduces the DL model complexity and size which is critical as 
we aim to implement the model on embedded devices with 
limited resources. Furthermore, instead of a general detection 
algorithm, such as YOLO, a lightweight segmentation-based 
model is proposed which not only segments the target insect 
on the image but also counts them. 

III. MATERIALS AND DATASET 

A. IoT Device  

The device used to collect the dataset is shown in Fig. 1 
and is described in detail in our previous work [12]. This 
device is equipped with a camera board to capture images 
from a double-sided trap. The camera board is an OpenMV 
Cam H7 Plus which is a low-power and small board based on 
a microcontroller (STM32H7) supporting Python scripting 
that makes deployment simple. The trap has a sticky surface 
that catches HHs with the help of a particular pheromone lure 
which only attracts HHs and consequently reduces bycatches. 
Moreover, a trap-based device was suggested to decrease the 
background complexity of the captured images. In fact, a 
white trap was chosen because it contrasts most with the 
brownish colour of the target insect facilitating the machine 
learning model training to distinguish the insects. 

The device was adjusted to capture 2-megapixel images 
daily during the night using the provided LED. Timing the 
system to operate at night allows us to control lighting 
conditions and eliminate ambient lights and shadows; 
therefore, the captured images have the same conditions in 
terms of lighting parameters such as light intensity and 
brightness. In addition, to capture images from both sides of 
the trap, a servo motor was built into the device, enabling it to 
cover both sides of the trap for image capturing. 

This device was deployed in a pear orchard in the Emilia 
Romagna region in northern Italy which was infested with 
Halyomorpha halys between 2022 and 2023. 

 
Fig. 1. Deployed device in an orchard for dataset collection from a 

sticky double-sided trap. 



 

 

B. Dataset 

The most important first step in developing DL models for 
insect monitoring systems is to have an appropriate dataset of 
the target insect. In this study, we created a dataset for HHs 
using images captured by the device described previously. 
This first version of the dataset was collected during the 
farming season of 2023 and consists of over 240 images from 
the trap surface taken at night. These are 2-megapixel images 
with a resolution of 1600x1200. This is a binary segmentation 
dataset with two classes including objects and background, 
thus the mask images are black and white: the white areas 
represent objects (e.g., HH insects) and the black regions 
represent the background. The dataset consists of three 
folders:  

1. Images: Contains trap images 

2. Masks: Contains corresponding ground truth images 
that mask HHs  

3. Num HHs: Contains a CSV file with the numbers of 
HHs on every image. 

Fig. 2 shows some images of this dataset with ground truth 
masks and numbers of HHs. It should be acknowledged that 
despite using a specific pheromone which only attracts HHs, 
captured images still have lots of by-catches, such as flies or 
bees, which is also obvious in the sample images in Fig. 2. 

In this study, for training and evaluating the proposed 
model, the dataset was split into training, validation, and test 
sets in which approximately 70%, 15%, and 15% of the total 
data were assigned to each set respectively. As mentioned 
before, images were taken from a two-sided trap, and the data 
analysis revealed that there is a difference between the 
distribution of insect numbers in images of these two sides. 
Therefore, to preserve this difference in all sets, stratified 
sampling based on the number of insects in images was used 
to split the data. To this purpose, images of each side were first 
split into train, validation and test sets separately using the 
stratified sampling technique and then combined to create the 
final dataset. This splitting strategy assures that the original 
dataset’s insect number distribution is reflected in all the 

subsets. To this end, the following steps were followed to 
create train, validation, and test sets: 

1. Divide images into side1 and side2 based on whether 
they were captured from side1 or side2. 

2. Use stratified sampling to split the data for training, 
validation, and test sets for images from side1 (train_side1, 
validation_side1, test_side1). 

3. Use stratified sampling to split the data into training, 
validation, and test sets for images from side2 (train_side2, 
validation_side2, test_side2). 

4. Combine training sets, train_side1 and train_side2, to 
construct the final training set. The same was done to 
construct the validation and test sets. 

Moreover, several augmentation techniques were 
employed on the training dataset to enhance the model 
generalization and decrease the risk of overfitting issues. By 
doing so, we added new variations of existing images to the 
training dataset and increased the number of samples. The 
augmentation techniques used were vertical and horizontal 
flip, rotation, and random brightness and contrast. 

IV. Y-NET MODEL FOR INSECT COUNTING AND 

SEGMENTATION 

Image segmentation is widely used to distinguish object 
regions in an image. One of the most popular image 
segmentation architectures is U-Net which is widely used for 
this purpose. This model has two main components, encoder 
and decoder, which are also known as the contracting and 
expansive paths respectively. The encoder part consists of 
convolutional layers that are widely used to extract important 
features from the input and decrease the dimensions of the 
input image. The decoder component is responsible for 
creating a segmentation map using upsampling layers and 
increasing the dimensions. The bottleneck is a central point 
where these two parts are connected to each other. In addition, 
U-Net benefits from skip connections which connect 
corresponding layers of encoder and decoder [13].  

U-Net generates an output image with the same size as the 
input image highlighting the object regions present within the 
input image. However, for insect monitoring, the number of 
insects on the image is also required in addition to segmented 
areas. To count the objects from the segmented binary image 
generated by U-Net, methods such as Connected-component 
labeling (CCL) [18] method can be used to count the 
connected pixels in the binary image. But such approaches 
impose extra stages on the system and increase the algorithm 
processing time and consequently increase the power 
consumption which is a critical factor for edge-based systems 
running on embedded devices. Besides, using CCL may count 
objects incorrectly if they overlap; this could be problematic 
in case of a high overlap rate which occurred a lot in our 
dataset. To tackle these, here a new DL model to detect and 
count the target insect on trap images is proposed. To this 
purpose, the Y-Net architecture, inspired by U-Net, was 
proposed to count the target insects and segment them on the 
input image in one stage. This architecture is shown in Fig. 3. 
As shown in Fig. 3, a branch has been taken from the 
bottleneck of the U-Net model for the counting output. As a 
result, following the encoder part extracting features, the 
model presents two branches, one used for insect counting 
while the other one is used for the segmentation task.  

Fig. 2. Two samples of the dataset. 



 

 

In this study, MobilenetV2 architecture [19] was used for 
the encoder component to efficiently extract features. 
MobilenetV2 was used due to its low complexity and 
lightweight structure which makes it well-suited for 
embedded devices with restricted computational resources.  

The decoder part consists of several transposed 
convolution or deconvolution layers to upsample the feature 
maps and reconstruct high-resolution spatial information. 
Like U-Net, this Y-Net architecture benefits from skip 
connections that copy and concatenate encoder layers' 
information to the corresponding decoder layers. In the 
counting part, the global average pooling (GAP) layer was 
used instead of a fully connected layer to flatten the input 
feature maps into a vector. This vector is then fed to a dense 
layer with ReLU as an activation function, and eventually to 
an output layer with a linear activation function to predict the 
number of objects. This network was named Y-Net because of 
its Y-shaped structure. 

It should be noted that using GAP instead of a fully 
connected layer significantly reduces the parameter numbers 
leading to a significant reduction in model size and 
computation; this is critical when the model is required to be 
run on embedded devices. Besides, this layer helps the 
network avoid overfitting issues since it averages all elements 
of each feature map while the fully connected layer flattens all 
elements of each feature map [20]. 

V. RESULTS EVALUATION AND DISCUSSION 

A. Evaluation Metrics 

As mentioned in Section IV, the proposed architecture has 
two outputs, counting and segmentation.  

For the counting part, the Mean Squared Error (MSE) and 
Mean Absolute Error (MAE) were utilized for assessing the 
performance of the proposed model. MSE measures the mean 
squared difference between the number of predicted insects in 
the input image and the actual one. MAE evaluates the 
counting performance by computing the mean absolute 
difference between the predicted and actual number of insects. 
These errors are calculated as shown in Eq. (1)-(2): 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  (1) 

  𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1  (2) 

Where 𝑛 is the number of images, and 𝑦𝑖  and �̂�𝑖  are the 
actual and predicted number of insects on each image, 
respectively. 

For the segmentation part, four metrics, including 
Intersection over Union (IoU), Dice Similarity Coefficient 
(DSC), precision, and recall were used [21][22]. IoU measures 
the overlap ratio between the predicted segmented area to the 
ground truth mask, providing a segmentation task accuracy. 
The DSC is another metric commonly used for binary 
segmentation, this metric measures the similarity of the 
predicted segmented area and the ground true mask. Since the 
false positive and false negative factors are important when 
working on the number of insects, precision and recall are also 
used in this study. In this context, precision measures the 
ability of the model to avoid false negatives by computing the 
ratio of correctly classified positive pixels to all pixels 
predicted as positive. Additionally, recall measures the 
model’s performance in correctly classifying all positive 
pixels, thus indicating the model’s effectiveness in 
minimizing false negatives. These metrics are calculated as 
shown in Eq. (3-6): 

 𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
=

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (3) 

 𝐷𝑆𝐶 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 (4) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

Where 𝑇𝑃  is the true positive pixels, 𝐹𝑃  is the false 
positive pixels, and 𝐹𝑁 is the false negative pixels. 

In addition to these metrics, we assessed the performance 
of the model in terms of inference time, which is also known 
as execution time or latency, and the number of parameters 
used in the model. These two metrics were categorized as 
efficiency metrics since they are related to the deployment and 
operation of the proposed model. 

B. Implementation Parameters 

The proposed Y-Net model was implemented and 
evaluated using TensorFlow on Google Colaboratory. For 
training the model, Binary Crossentropy was selected as the 
loss function for the segmentation task since we have two 
classes (HHs and background), and MSE was used for the 
counting task. Moreover, Adam optimization was utilized for 
model training during 100 epochs. 

Furthermore, the performance of the proposed Y-Net was 
investigated for two different input sizes including 448x448 
and 320x320 to compare the input size impact on the 
segmentation, counting and efficiency of the model. Also, we 
assessed the performance of the model by changing the alpha 
α parameter of MobileNetv2; alpha is a parameter defined to 
control the model width by scaling the channel number of each 
layer which impacts the model complexity and accuracy. 
Moreover, inference time of the model was measured by 
running the model on a Samsung A54 Android phone. 

 
Fig. 3. Y-Net architecture with two outputs: counting and segmentation. 



 

 

C. Results 

Table I reports the values of these metrics for different 
configurations of the proposed Y-Net. It is evident that the 
model with the alpha value of 0.75 and input size of 320x320 
had the lowest value of MSE and MAE at around 1.86 and 
0.98, respectively. Based on the results, it was observed that 
the counting was affected when there was a multitude of HHs 
on the trap, specifically when the insects were laid over each 
other since it increased the complexity of extracting features 
of distinct insects for the model. 

Based on Table I, the models with the input size of 
448x448 (α=1) and 320x320 (α=1) have the best performance 
in terms of insect segmentation at approximately 85% for IoU 
and 91% for DSC. Additionally, these two models obtained a 
recall and a precision of about 92% indicating that the model 
is able to correctly predict positive cases which are actual 
positive and also minimise false positives and negatives. 
However, the model with an input size of 448x448 requires 
0.94 seconds to analyse one image while the model with an 
input of 320x320 needs 0.48 seconds.  

As expected, by decreasing the alpha, the model 
performance decreases for both counting and segmentation, 

but it also results in a significant reduction in the number of 
model parameters and inference time. For example, by using 
a model with an alpha value of 0.35, IoU and DSC are 
respectively approximately 4% and 2% lower than a model 
with α=1 but it has a model parameter and inference time of 
nearly three times less. There is therefore a trade-off between 
model efficiency and accuracy and should be carefully 
balanced for practical applications of automated insect 
monitoring on embedded devices. 

Moreover, the number of parameters is independent of the 
input size, and this is attributed to the use of a GAP layer 
instead of a fully connected layer that made the model size and 
parameters unaffected by the input size. However, the input 
size has a direct impact on the model inference time. As 
mentioned, a model with an input size of 448x448 needs 
approximately twice as much time as a model with an input 
size of 320x320 for each prediction. Thus, a larger input size 
leads to higher execution time since a larger image needs more 
computations to be analysed by the model. 

Finally, Fig. 4 depicts how the model (input size of 
448x448 with α=1) works by showing two samples of the 
model outputs, the first row is an image with three HHs and 

 
Fig. 4. Examples of the model outputs 

Table I. Y-NET PERFORMANCE ON THE TEST SET FOR TWO DIFFERENT INPUT SIZED AND FOUR DIFFERENT ALPHA VALUES OF MOBILENETV2 WITH MEAN 

VALUE AND 95% CONFIDENCE INTERVAL (CI) OF SEGMENTATION AND COUNTING METRICS.  
IOU: INTERSECTION OVER UNION , DSC: DICE SIMILARITY COEFFICIENT, MSE: MEAN SQUARED ERROR, MAE:MEAN ABSOLUTE ERROR. 

Model Segmentation metrics Counting metrics Efficiency metrics 

Input Size α IoU DSC Precision Recall MSE MAE 
Model 

parameters 

Inference 

time (s) 

 
448x448 

  

1 
84.60 

(84.39, 84.82) 
91.56 

(91.42, 91.70) 
92.39 

(91.97, 92.81) 
91.65 

(91.18, 92.12) 
3.12 

(2.64, 3.60) 
1.34 

(1.23, 1.46) 
12,446,226 0.94 

0.75 
84.01 

(83.71, 84.30) 

91.22 

(91.03, 91.40) 

91.90 

(91.07, 92.72) 

92.02 

(90.86, 92.82) 

2.38 

(1.98, 2.78) 

1.11 

(1.00, 1.22) 
8,897,226 0.75 

0.5 
82.38 

(82.07, 82.68) 
90.18 

(89.97, 90.39) 
92.79 

(92.42, 93.16) 
89.21 

(88.69, 89.74) 
3.13 

(2.59, 3.76) 
1.20 

(1.07, 1.36) 
5,535,154 0.34 

0.35 
81.21 

(80.86, 81.56) 

89.51 

(89.27, 89.75) 

93.97 

(93.38, 94.47) 

87.43 

(86.41, 88.45) 

2.58 

(2.36, 2.88) 

1.18 

(1.09, 1.28) 
3,842,194 0.31 

 

320x320 
  

1 
84.96 

(84.79, 85.10) 

91.78 

(91.68, 91.87) 

91.90 

(91.48, 92.31) 

93.01 

(92.68, 93.35) 

2.89 

(2.31, 3.47) 

1.26 

(1.15, 1.38) 
12,446,226 0.48 

0.75 
84.33 

(84.14, 84.52) 
91.43 

(91.32, 91.54) 
92.02 

(91.37, 92.66) 
92.77 

(92.12, 93.43) 
1.86 

(1.65, 2.18) 
0.98 

(0.91, 1.08) 
8,897,226 0.39 

0.5 
82.73 

(82.61, 82.84) 

90.45 

(90.37, 90.52) 

92.34 

(91.81, 92.87) 

90.32 

(89.61, 91.03) 

3.14 

(2.82, 3.45) 

1.28 

(1.20, 1.37) 
5,535,154 0.18 

0.35 
80.77 

(80.56, 80.97) 
89.22 

(89.09, 89.35) 
93.42 

(93.16, 93.69) 
87.91 

(87.38, 88.45) 
2.73 

(2.41, 3.05) 
1.22 

(1.10, 1.34) 
3,842,194 0.14 

 



 

 

the second row is an image with 27 HHs, some of which 
overlap. The first column shows the original image, the second 
column shows the model output including the segmented 
image and number of HHs, the third column shows the true 
mask and the actual number of insects on the input, and the 
last column visualizes segmentation results on the input 
image. As expected, the increase in the number of insects 
increases the chance of overlap among insects which 
negatively affects the performance. 

VI. CONCLUSION 

This study presents a deep learning-based model for insect 
counting and segmentation on images. The proposed model, 
named Y-Net, is inspired by the U-Net architecture, with the 
difference that in addition to segmentation, it also allows 
insect counting. This study focused on Halyomorpha halys 
and attempted to segment and count this species on images. 
The dataset was gathered using an IoT device deployed in an 
orchard which was infested by the targeted insect. Results 
obtained were promising and showed an MSE value of 1.9 in 
terms of insect counting, and in terms of segmentation the 
model obtained an IoU of 84.5%, a DSC of 91.5%, and 
precision and recall of over 92%. 

In the future, we intend to implement the model on 
resource-constrained embedded devices on the edge enabling 
practical applications of automated insect monitoring by 
optimising the model, specifically in terms of energy 
consumption and RAM usage. 
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