
B{GOP}: An Adaptive Algorithm for Coverage
Problems in Wireless Sensor Networks

Dimitrios Zorbas, Dimitris Glynos, Panayiotis Kotzanikolaou, Christos Douligeris
Department Of Informatics, University Of Piraeus,

Karaoli & Dimitriou 80, Piraeus 18535, Greece
email: {dzorbas, daglyn, pkotzani, cdoulig}@unipi.gr

Abstract— To achieve power-efficient monitoring of targets in
a terrain covered by a sensor network, it is sensible to divide the
sensors into cover sets and make each of these sets responsible
for covering the targets for a certain period of time. Generating
the maximum number of such cover sets, has been proved to be
an NP-complete problem, and thus algorithms producing sub-
optimal solutions have been proposed. In this paper we propose
a centralised heuristic algorithm, that efficiently generates cover
sets, each one capable of monitoring all targets. Our simulation
findings demonstrate an improvement against existing methods,
with results close to the optimal solution.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) find extensive use in
many domains such as military applications [1], environment
monitoring [2], target surveillance [3] and disaster prevention
[4]. Each WSN node is equipped with at least one sensing
module and a communication module, which enable the col-
lection of monitoring data and transmission to a base station,
situated in close proximity to the WSN. The base station may
be a desktop computer or a laptop.

The node deployment and placement can be realised either
in a predefined way or randomly, depending on the application
and the environment. In hostile environments for example,
sensors may be dropped from an aeroplane. With such random
placement however, the node density cannot be guaranteed;
some areas may contain more sensors than others.

WSN nodes have three modes of operation. In the active
mode, a sensor can observe the environment and communicate
with other sensors (or the base station). In the sleep mode, a
sensor cannot monitor or communicate. However, the node
can change to the active mode, any time it receives the
appropriate signal (either from another sensor or the base
station). Obviously, in the sleep mode a sensor consumes much
less energy than in active mode. Finally, in the off mode, the
nodes are completely inactive. This happens either when the
battery of a sensor is exhausted or when the sensor is turned
off completely.

Sensors have a limited battery life. If all sensors in a terrain
were to be activated at the same time, then the lifetime of
the network would be equal to the lifetime of a single sensor
(supposing that all sensors have almost equal battery life),
say k hours. Clearly, if the uptime of each sensor could be
programmed in an efficient and practical way, the lifetime of
the WSN would be extended. In order to achieve this, the
nodes must be divided into a number of subsets, called cover

sets. Sensors belonging to the currently scheduled cover set are
in active mode, while others are in sleep mode. Each cover
set is capable of covering all monitored targets1. If the cover
sets are node-disjoint sets, then each sensor will be allowed to
participate only in one cover set, and thus each set will have
a maximum lifetime of k. By periodically switching between
sets of coverage sensors, we can extend the target coverage
time to s · k, where s is the number of available sets.

WSN coverage problems are divided into point coverage
and area coverage scenarios. The objective in point coverage
is to cover a set of points with a subset of the randomly
deployed sensor nodes. Every point is monitored by at least
one sensor. In the area coverage problem, the monitored space
is divided into smaller areas called fields [5]. Each field is
uniquely identified by a set of covering sensors that completely
cover (monitor) this field. The goal in area coverage is to
produce sets of sensors, that completely cover all fields and
consequently the entire area. As described in [6], the area
coverage problem is closely linked to the point coverage
problem, since the fields are equivalent to the points mentioned
previously. As far as the coverage algorithms are concerned,
the area coverage problem provides an algorithm with much
more targets rather than sensors, while the opposite is true for
the point coverage case.

In this paper, we propose a novel centralised algorithm for
the generation of node-disjoint cover sets2. Each sensor set is
capable of monitoring independently all registered targets. The
algorithm provides efficient solutions for both point and area
coverage problems. Furthermore, we simulate the proposed
algorithm and compare its results to that of [5], with regard
to the total time of execution and number of generated sets.

II. RELATED WORK

Cardei and Wu provide in [7] a taxonomy of sensor coverage
algorithms according to several design criteria, such as: (i)
the coverage objective, i.e. maximise the lifetime of the
network or minimise the required number of deployed sensors,
(ii) the node deployment method, which may be random or
deterministic, (iii) the homogeneous or heterogeneous nature
of the nodes, i.e. whether all nodes have a common sensing

1The term target coverage is used in this text to refer to either area or point
coverage scenarios.

2This work has been partially supported by the EU through the IST project
SWEB.

or communication range, (iv) the degree of centralisation, i.e.
centralised vs distributed algorithms, (v) additional require-
ments for energy efficiency and connectivity. An additional
criterion that can be added to the above list is cover set
independence, i.e. whether a node appears in exactly one of
the generated sets (node-disjoint coverage algorithms) or not
(non-disjoint coverage algorithms).

In the next subsections we present algorithms that maximise
the lifetime of the WSN and can be used in random sensor de-
ployment scenarios with homogeneous device characteristics.

A. Centralised Node-Disjoint Coverage Algorithms

In a centralised coverage algorithm the schedule is first cal-
culated on the base station and is then sent to the sensor nodes
for execution. The advantage of this scheduling approach is
that it requires little processing power from the sensor nodes,
which usually have limited processing capabilities.

Slijepcevic and Potkonjak [5] propose such an algorithm
for the area coverage problem. They introduce the idea of the
field as a set of targets. Two targets belong to the same field
if and only if they are covered by the same set of sensors.
In particular, the fields are small areas which are produced
from the intersection of coverage limits of sensors and/or the
physical limits of the whole area. Every sensor covers one or
more fields and one field is covered by at least one sensor.
First, the algorithm covers the more sparsely populated fields
(the fields that are covered by the smallest number of sensors).
These are called critical fields. After the selection of a node
that covers a critical field, the algorithm excludes all other
nodes covering the same field. In this way it is assured (during
the construction of a cover set) that only one node covering a
particular critical field shall be selected. The complexity of the
algorithm is O(n2), where n is the total number of sensors.

Cardei et al [8] propose an algorithm to solve the same
problem. They construct an undirected graph G = (V,E),
where V is the set of sensors and E the set of edges, such
that u v ∈ E if and only if u, v are within each other’s
sensing range. The goal is to find the maximum number
of dominating sets. To achieve this the authors use a graph
colouring technique. As depicted in [9], despite the production
of more sets than [5], the dominating sets do not guarantee the
coverage of the whole area. The complexity of the heuristic
which computes the disjoint sets from the coloured graph is
O(n3).

Cardei and Du [6] propose an algorithm in order to solve
the random target coverage problem. This problem can be
successively formulated as an area coverage problem, which
is proved to be an NP-Complete problem. Cardei and Du
define the disjoint-set coverage problem, first introduced by
Slijepcevic and Potkonjak [5], as a generalisation of the 3-
SAT problem [10]. The authors propose a heuristic to compute
the disjoint sets. In order to compute the maximum number
of covers, they transform the problem into a maximum-flow
problem. Then, the result of the maximum-flow problem is
solved using Mixed Integer Programming, which heuristically
produces the final number of cover sets. The results in [6]

show a slight improvement in the number of produced sets
in comparison to [5], while the complexity of the algorithm
depends on the complexity of the mixed integer programming
with the results exhibiting a substantial delay.

Abrams et al [11] propose a centralised algorithm utilising
randomisation to solve the coverage problem. Each generated
cover set does not cover all targets and all cover sets must be
scheduled successively in order to achieve an 80% coverage
of the monitored areas. The complexity of this algorithm is
O(nk|Smax|), where n is the number of sensors available, k
the number of generated cover sets and |Smax| is the maximum
number of fields a sensor covers.

B. Centralised Non-disjoint Coverage Algorithms

In the case of non-disjoint algorithms, nodes may participate
in more than one cover sets. In some cases, this may prolong
the lifetime of the network in comparison to the disjoint cover
set algorithms.

Cardei et al [12] propose a Linear Programming (LP)
solution to the target coverage problem for non-disjoint sets.
Although the LP algorithm presents high complexity O(p3n3),
where p is the number of covers and n the number of sensors),
the authors also propose a greedy algorithm, with a smaller
complexity (O(dm2n), where d is the number of sensors that
cover the targets with the minimum cardinality and m is the
number of targets).

Another LP technique is proposed by Berman et al [13]. It is
based on the (1+ε)-approximation of the Garg and Könemann
algorithm [14].

Non-disjoint scheduling policies exhibit decreased re-
siliency and dependability in the presence of faulty or cor-
rupted nodes, since the same node may have to participate in
more than one sets. Moreover, non-disjoint algorithms may
generate more cover sets than node-disjoint ones, but the
generating algorithm incurs a higher order of complexity.

C. Distributed Coverage Algorithms

In distributed coverage algorithms a number of sensor nodes
perform the required calculations cooperatively and they then
disseminate the scheduling information to the rest of the
sensors. This scheme may require some processing from the
sensors involved, but it scales better to accommodate larger
networks.

Several distributed algorithms have been proposed in the
literature [15], [16]. These approaches target to produce not
only an efficient coverage algorithm, but also a distributed and
localised scheduling scheme, in order to rapidly disseminate
the scheduling information throughout the network.

Since the algorithm presented in this paper belongs to the
centralised category, we will not provide further details on
distributed schemes, for sake of brevity.

III. PROBLEM DESCRIPTION

In this section we describe the characteristics of a cen-
tralised algorithm that generates node-disjoint sensor sets, each
capable of independently monitoring all targets.

Let T0 = {t1, t2, . . . , tk} be the set of target points and
S0 = {s1, s2, . . . , sn} the set of sensor nodes. Each target
point in T0 is covered by at least one sensor node in S0.

Each sensor may have a number of sensing capabilities. The
minimum sensing range of these capabilities is r. We assume
that any target lying within the circle defined by the location
of a sensor (circle centre) and range r (circle radius), can be
monitored by this sensor.

We call Ni the set of “neighbour-sensors” of target ti. Each
neighbour sensor sj ∈ Ni is capable of monitoring the target
ti, i.e. ∀ sj ∈ Ni : |ti − sj | ≤ r, Ni ⊆ S0, ti ∈ T0, where
|ti − sj | denotes the distance between target ti and sensor sj .

The input I of a coverage algorithm is a set of tuples of the
form: I = {(t1, N1), . . . , (tk, Nk)}, ti ∈ T0, k = |T0|, where
Ni is the set of “neighbour–sensors” of target ti. The set I
contains one tuple per target in T0. A specific sensor may
appear in more than one “neighbour–sensor” sets.

The algorithm produces a collection C = {C1, . . . , Cm} of
m “cover sets”. Each cover set Cp is a subset of the available
sensors (Cp ⊆ S0) and must cover all targets found in T0. In a
node-disjoint algorithm, each sensor is allowed to participate
only in one cover set, i.e. Ci ∩ Cj = ∅, ∀ i, j : 1 ≤ i, j ≤ m
and i 6= j.

The objective of such an algorithm is to maximise the
cardinality |C| of the generated collection C, thus producing
more sensor sets and extending the lifetime of the sensor
network. Obviously, the target with the smallest “neighbour-
sensor” set, places an upper bound on the number of generated
cover sets. If the smallest “neighbour-sensor” set includes x
sensors, then a node-disjoint coverage algorithm can produce
at most x cover sets, since (i) each cover set must cover all
targets and (ii) each of the sensors included in the “neighbour-
sensor” set can only be part of one cover set.

We call this upper-bound, the theoretical maximum, which
can be trivially computed from the input I of the algorithm.
The theoretical maximum can serve as a hint for both heuristic
and “branch & bound” algorithms, signifying the point where
the algorithm has developed an optimal (or near optimal)
solution and no further searching is required.

Unfortunately, the theoretical maximum does not always
provide the actual maximum number of the sets that can be
generated for a given input I . As described above, once all
sensors from small “neighbour-sensor” sets have been used,
the algorithm will not be able to produce any other cover
sets. We will call targets that are associated with such small
“neighbour-sensor” sets, Critical Targets. When selecting the
next sensor to be added to the currently generated cover set,
there is a higher probability that this sensor will cover a
Critical Target if the network is densely populated (i.e. a sensor
covers many targets) rather than sparsely populated (i.e. each
sensor covers few targets). It is thus possible for a cover set
of a dense network, to include more than one neighbours
of a given Critical Target. Each additional neighbour used,
that covers the same Critical Target, shrinks by one the total
number of generated cover sets (since each sensor can only
be part of one cover set). The algorithm will quickly run out

of sensors covering this Critical Target and will eventually
produce less cover sets than the theoretical maximum. There
is no efficient way, to the best of our knowledge, of pre-
calculating the real maximum number of cover sets, without
actually trying combinations of cover sets.

One can limit the number of sensors covering Critical
Targets within a cover set by first selecting a sensor covering
the most Critical Target and then making sure not to select any
other sensor from this target’s “neighbour-sensor” set. This
method, introduced by [5], requires recalculation of the most
Critical Targets at the beginning of each loop of the algorithm.
Our approach (described in more detail in the next section)
tags each sensor with an attribute describing the number of
Critical Targets it covers. Sensors can then be sorted by this
attribute and the sensor with the minimum Critical Target
covers, may be selected. This adds flexibility to the algorithm
in the cases where choosing more than one sensors covering
Critical Targets, is the only way of generating more cover
sets. The attribute value is computed once during the Setup
phase of the algorithm and depends only on the initial cover
relationships between sensors and targets (i.e. set I).

A coverage algorithm terminates either when it has reached
the theoretical maximum number of generated cover sets,
or when it has run out of sensors capable of covering the
given set of targets. Running out of sensors, is not attributed
only to Critical Targets though. Poor selection of sensors
may cause targets to be double (or even triple) covered with
auxiliary sensors that could have been used elsewhere more
appropriately (and would have thus helped in generating more
cover sets). Each cover set must therefore contain a minimal
amount of sensors, leaving as many sensors as possible for the
next cover sets to utilise.

IV. ALGORITHM DESCRIPTION

We will now present B{GOP}, a novel centralised coverage
algorithm for the generation of node-disjoint cover sets.

A. Setup

During the Setup phase, B{GOP} uses input I to construct
the following auxiliary constants:

• The initial target set T0

• The initial sensor set S0

• The “neighbour-sensor” set Ni for each target ti ∈ T0

• The “point-coverage” set Pj for each sensor sj ∈ S0,
containing the targets sensor sj is capable of monitoring,
i.e. ti ∈ Pj iff sj ∈ Ni

• The maximum number of sensors per “neighbour-sensor”
set, µ = max(|N1|, . . . , |Nk|), k = |T0|.

• The badness attribute Bj describing the amount of Crit-
ical Targets, sensor sj covers. The attribute value is
computed according to the following formula:

Bj =
|Pj |∑
i=1

(µ− |Ni|)3

where Ni is the “neighbour-sensor” set of the i-th element
of Pj .

• Maximum badness: max badness = max(B1, . . . , Bk),
k = |T0|.

• The theoretical maximum number of possible generated
sets, max sets = min(|N1|, . . . , |Nk|), k = |T0|.

B. Main Algorithm

B{GOP} starts by initialising Scur, a set that keeps track
of the available sensors, to S0. The main algorithm is im-
plemented as a greedy heuristic, mapped to three nested loops
(see Alg.1): the “Unused Sensor Check” loop, the “Uncovered
Target Check” loop and the “Sensor Applicability Check”
loop.

The “Unused Sensor Check” loop is responsible for adding
cover sets to the collection C, provided that there are still
sensors available to utilise. It creates an empty cover set
Ccur and initialises the set of currently uncovered targets
Tcur with the targets found in T0. It then passes control to
the “Uncovered Target Check” loop which is responsible for
populating the cover set Ccur with sensors. Once Ccur is
ready, it is added to the collection C. If the algorithm detects
that it has generated the maximum number of possible cover
sets (max sets), it stops searching for further sets and returns
the current collection of cover sets C.

The “Uncovered Target Check” loop is responsible for
selecting a sensor from a set of candidates, provided by the
“Sensor Applicability Check” loop. Each candidate belongs to
one of four classes (see Fig. 1), depending on the number of
targets it covers in Tcur and T0 − Tcur:

• class Best: The sensor covers all uncovered targets and
none of the already covered ones.

• class Good: The sensor covers a subset of the uncovered
targets and none of the already covered ones.

• class OK: The sensor covers all of the uncovered targets
and a subset (or all) of the already covered ones.

• class Poor: The sensor covers a subset of the uncovered
targets and a subset (or all) of the already covered ones.

Members of the Best class are always the preferred candi-
dates for inclusion to cover sets. If no member of the Best
class exists, we can try one of the other classes in the order
Good → OK → Poor, although this will provide us with
results far from the optimum. To clarify this point, one may
consider a scenario where it is preferable to select a Poor
sensor, covering one already covered target and five uncovered,
rather than a Good sensor covering just one uncovered target.
Instead of enforcing a static order of preference, the B{GOP}
algorithm merges all members of the Good, OK and Poor
classes into a new class and sorts them according to a weight
calculated within the “Sensor Applicability Check” loop.

Once the best qualifying candidate has been selected, it is
removed from the current sensor set Scur and added to the
current cover set Ccur. Additionally, all targets monitored by
this sensor are removed from Tcur. The “Uncovered Target
Check” loop exits when there are no more targets to cover,
thus signifying that the cover set Ccur is ready for inclusion
to the collection C.

Algorithm 1 B{GOP} Adaptive Coverage Algorithm
Require: S0 6= ∅, T0 6= ∅, P 6= ∅, B 6= ∅, max sets > 0,

max badness > 0

C = ∅
Scur = S0

while Scur 6= ∅ do /* Unused sensor check */
Ccur = ∅
Tcur = T0

while Tcur 6= ∅ do /* Uncovered target check */
best := none
other := none
selected := none
min badness := max badness + 1
max benefit := 0
for all s ∈ Scur do /* Sensor applicability check */

if freq (Ps, Tcur) = 0 then
ignore this sensor

else if freq (Ps, Tcur) = freq (Ps, T0) then
if Bs < min badness then

min badness := Bs

best := s
end if

else
in := freq (Ps, Tcur)
out := freq (Ps, T0)− in

α :=
|C|

max sets

β := 1 − Bs

max badness

benefit :=
in

(out + 1)α + β

if benefit > max benefit then
max benefit := benefit
other := s

end if
end if

end for /* Sensor applicability check */
selected := best or other
if selected = none then

return C
end if
Scur = Scur − {selected}
Tcur = Tcur − Pselected

Ccur = Ccur ∪ {selected}
end while /* Uncovered target check */
C = C ∪ {Ccur}
if |C| = max sets then

return C
end if

end while /* Unused sensor check */
return C

The “Sensor Applicability Check” loop is responsible for
classifying candidates according to their coverage status, sort-
ing members of the Best and merged classes and, finally,
selecting the top Best and merged class sensors. To test the
coverage status of a sensor, the utility function freq(Pj , T) is
used, which counts the targets in T that sensor sj covers, i.e.:

freq(Pj , T) = |Pj ∩ T |

A B C D E F

Targets Already
Covered

Targets Not
Covered Yet

S1 : Best

A B C D E F

S2 : Good

A B C D E F

S3 : OK

A B C D E F

S4 : Poor

Fig. 1. The four classes of sensor candidates: Best, Good, OK and Poor

If the candidate covers no targets from the current target set
Tcur, it can be safely ignored.

Candidates of the Best class are sorted according to their
badness attribute Bj (see Setup), while candidates of the
merged classes are sorted according to the following benefit
attribute:

benefit =
in

(out + 1)α + β

where in is the number of uncovered targets a candidate
covers, out is the number of already covered targets a can-
didate covers, α is a measure of how close the algorithm
is to providing the maximum number of generated sets and
β is the normalised value of the badness attribute of the
sensor. The objective of the benefit attribute is threefold:
a) to select candidates that cover as many uncovered targets
as possible (thus generating smaller cover sets), b) to select
candidates that cover as few already covered targets as possible
(thus minimising the probability of double-covering a Critical
Target) and c) to risk selecting a sensor from the OK or Poor
classes when it is of low badness or when the algorithm
has still many cover sets to produce. By managing this
risk intelligently, the algorithm adapts to the needs of each
coverage scenario (sparse/dense network, area/point coverage).

C. Algorithm Analysis

In order to select a single sensor for inclusion to a generated
set, the algorithm must test all available sensors for their
monitoring capacity over the currently uncovered targets. Once
a sensor with a suitable monitoring capacity has been chosen,
the remaining sensors will be tested with regard to the targets
the previously selected sensor has left uncovered. Once a
generated set is complete (i.e. covers all targets), the algorithm
will start building a new one and will re-initialise the set of
uncovered targets Tcur to the initial set of targets T0.

The algorithm will terminate either when it has run out of
sensors (Scur = ∅) or when it has reached the maximum num-
ber of possible generated sets (|C| = max sets). As explained
in section III the theoretical maximum number of generated
sets is sometimes impossible to achieve, since the algorithm
exits prematurely, having no more sensors to utilise. Hence, the
total number of available sensors introduces an upper bound
to the execution time of the algorithm. The longest run of
B{GOP} would have included all available sensors in the
generated sets. In that case, the time taken to produce the
generated sets from n sensors and k targets would have been
proportional to the following sum:

n−1∑
i=0

(n− i)(k − i mod k), where n = |S0|, k = |T0|

We can thus deduce that the total running time of B{GOP} is
O(n2k).

We will now prove that B{GOP} is capable of generating
at least one cover set, if one exists. If G is a cover set, then:

∀ ti ∈ T0, ∃ sj ∈ G : ti ∈ Pj (1)

where G ⊆ S0, G 6= ∅, Pj ⊆ T0 and Pj 6= ∅.
Let us suppose that a set G does exist (covering all targets in

T0 with sensors from S0) but B{GOP} has failed to produce a
cover set. This effectively means that during the construction
of the first cover set, the algorithm failed to find a sensor sj

capable of covering a subset of Tcur :

∀ti ∈ Tcur, @sj ∈ Scur : ti ∈ Pj (2)

The set Ccur contains the sensors already selected for
inclusion to the cover set. Since this is the algorithm’s first
attempt to construct a cover set, all sensors not found in the
current sensor set Scur are members of Ccur:

S0 = Ccur ∪ Scur, Ccur ∩ Scur = ∅ (3)

Any targets covered by sensors in Ccur have been removed
from the current point set Tcur. Hence from (3) we have:

∀ti ∈ Tcur, @sj ∈ Ccur : ti ∈ Pj (4)

From (2), (3), (4) we have:

∀ti ∈ Tcur, @si ∈ S0 : ti ∈ Pj (5)

Statement (5) is false, since we can rewrite (1) for Tcur ⊆ T0

and G ⊆ S0, as follows:

∀ti ∈ Tcur,∃sj ∈ S0 : ti ∈ Pj (6)

Thus, our initial hypothesis proves to be false; if a solution to
the coverage problem exists, the B{GOP} algorithm will have
a sufficient number of sensors to generate at least one cover
set.

D. Optimisations

During the “Sensor Applicability Check” (see Algorithm 1)
the freq(P, T) function is used to measure the coverage
status of a sensor with respect to the current and initial set
of targets (i.e. freq(Ps, Tcur) and freq(Ps, T0) respectively).
Function freq(P, T) calculates the number of members found
in the intersection of sets P and T which requires at least
min(|P |, |T |) checks3. By minimising the number of unnec-
essary calls to freq(P, T), the total execution time of the
algorithm can be reduced.

The initial coverage of a sensor freq(Ps, T0) can be
computed during the Setup phase, since it remains constant
throughout the algorithm runtime.

Instead of calculating the current coverage freq(Ps, Tcur)
upon request, we can have this value pre-calculated, whenever
Tcur changes:

• freq(Ps, Tcur) will be equal to the initial coverage
freq(Ps, T0) whenever the current target set is initialised
to the original target set (i.e. Tcur = T0).

• As soon as a sensor has been selected for the generated
set, the targets the sensor covered are removed from the
current set of targets Tcur. The coverage value of other
sensors covering any of these targets is decremented as
required.

The optimisations mentioned above make the coverage
checks much more efficient and have been used in the simu-
lation software described in the next section.

V. SIMULATION

To test the efficiency of the algorithm presented in this
paper, we developed a prototype implementation in the Perl
programming language. A set of Perl scripts were responsible
for generating two types of virtual terrains: (i) a 2-dimensional
1km2 terrain with a user-defined amount of sensors, targets
and occupied terrain space, each sensor having a commu-
nication radius of 50m and sensing radius of 2m, placed
randomly on the terrain following the uniform distribution, and
(ii) random sensor-to-target assignment, following the uniform
distribution, with user-defined number of sensors, targets and
maximum number of targets per sensor.

We examine three different simulation scenarios. We run
each simulation scenario 5 times, with random target and
sensor deployment and we compute for each scenario the
average results of these 5 runs. Moreover, we run each one
of these 5 runs (per simulation scenario) 5 times in order
to compute the minimum time values. The value “average
time per set” is reported as the average of the minimum time
values, divided by the number of produced sets. For all of
the examined scenarios, we compare our algorithm’s results
to those of the Slijepcevic and Potkonjak [5] algorithm. All
experiments were carried out on a Pentium III 1Ghz host with
512MB of RAM, running the Debian GNU/Linux operating
system.

3should a hash-table be employed for set member lookups

B{GOP} Slijepcevic
Max Covers Sets Total Avg time Sets Total Avg time
per Sensor produced time per set produced time per set

5 18.6 2.836s 0.155s 18.6 0.313s 0.017s
10 38.8 4.215s 0.109s 37.8 0.571s 0.015s
15 53.2 5.049s 0.095s 51.2 1.043s 0.020s
20 69.8 5.999s 0.086s 65.0 1.874s 0.029s
25 82.4 6.902s 0.084s 77.0 3.067s 0.040s
30 95.8 7.956s 0.083s 89.0 4.861s 0.055s
35 108.6 8.996s 0.083s 101.2 7.197s 0.071s
40 121.8 10.245s 0.084s 113.0 10.485s 0.093s
45 135.6 11.331s 0.084s 126.2 14.671s 0.116s
50 147.2 12.711s 0.086s 138.4 19.506s 0.141s
55 159.6 14.074s 0.088s 148.2 24.302s 0.164s
60 172.2 15.647s 0.091s 161.2 31.718s 0.197s
65 186.0 17.526s 0.094s 174.8 40.611s 0.232s
70 202.6 19.868s 0.098s 189.6 51.852s 0.273s
75 220.2 22.370s 0.103s 206.4 67.242s 0.326s
80 232.4 24.196s 0.104s 219.6 81.481s 0.371s

TABLE I
1ST SCENARIO (1000 SENSORS, 100 TARGETS): NUMBER OF PRODUCED

SETS IN RELATION TO THE INCREASE IN SENSOR COVERAGE CAPACITY

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

A
vg

. t
im

e
pe

r
se

t (
se

c)

Maximum coverage per sensor

BGOP Slijepcevic

Fig. 2. 1st scenario (1000 sensors, 100 targets): Average time per produced
set

The first scenario involves the deployment of 1000 sensor
nodes and 100 targets. We examine the effect of an increase
in the maximum number of targets that a sensor node can
cover. This is equivalent to an increase in the sensor coverage
range. As shown in Table I, B{GOP} produces more cover
sets than the algorithm of [5]. The improvement of B{GOP}
becomes more intense, as we move towards a more dense
deployment. An interesting point, as shown in Fig. 2, is that
the B{GOP} algorithm exhibits almost constant performance.
The Slijepcevic and Potkonjak algorithm starts with better
runtimes, but these grow exponentially as the number of
targets-per-sensor increases.

In the 2nd scenario, the network consists of 100 sensors,
while the number of targets ranges from 10 to 50. A sensor
node may cover all targets. Fig. 3 compares the average
number of covers computed by the B{GOP} and Slijepcevic
and Potkonjak algorithms. This graph also illustrates the theo-
retical maximum number of possible sets, for each simulated
case.

Finally, the 3rd scenario examines the performance of
B{GOP} in the area coverage domain. In this case we use
a constant number of 1000 randomly dropped sensor nodes,

 25

 30

 35

 40

 45

 50

 10 15 20 25 30 35 40 45 50

G
en

er
at

ed
 s

et
s

Targets

BGOP
Slijepcevic

Theoretical Maximum

Fig. 3. 2nd scenario (100 sensors, 10-50 targets): Number of produced sets

B{GOP} Slijepcevic
Max Covers Sets Total Avg time Sets Total Avg time
per Sensor produced time per set produced time per set

500 7.8 8.270s 1.061s 7.4 4.377s 0.592s
600 9.8 10.228s 1.043s 9.4 6.672s 0.710s
700 11.8 12.352s 1.047s 11.0 9.161s 0.833s
800 13.2 14.136s 1.071s 12.2 11.893s 0.974s
900 14.6 16.238s 1.112s 13.8 15.318s 1.110s

1000 15.8 18.116s 1.147s 15.0 19.103s 1.273s
1100 18.0 21.650s 1.203s 17.0 25.738s 1.514s
1200 19.2 23.922s 1.246s 18.6 30.786s 1.653s
1300 22.0 28.905s 1.314s 20.0 40.862s 2.043s
1400 23.0 31.205s 1.357s 21.6 47.564s 2.202s
1500 23.6 33.269s 1.410s 22.8 54.853s 2.405s

TABLE II
3RD SCENARIO (1000 SENSORS, 5000 FIELDS): SIMULATION RESULTS

FOR VARYING MAX. NUMBER OF COVERED FIELDS PER SENSOR.

5000 fields and a varying maximum number of fields that a
sensor may cover. Fig. 4 illustrates the number of produced
sets of both algorithms. As shown in Table II, the B{GOP}
algorithm produces more cover sets with a satisfactory growth
rate in execution time.

VI. CONCLUSIONS

In this paper, we have presented B{GOP}, a centralised
coverage algorithm for WSN. Our work contributes to the field
of sensor coverage in the following ways:

• Modelling of greedy coverage algorithms for node-
disjoint sets.

• Introduction of a novel efficient algorithm for both point
and area coverage scenarios.

• Introduction of sensor candidate categorisation, with 4
classes of sensors, depending on their coverage status.

• Flexible avoidance of double-covering a critical field, by
ranking sensors according to the coverage status of the
fields they cover.

• Adaptive sensor selection policy based on: class, coverage
of critical fields and number of available sensors.

Our simulations have shown that B{GOP} outperforms algo-
rithms such as [5] and that it is suitable for use in any area
or point coverage scenario.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 500 600 700 800 900 1000 1100 1200 1300 1400 1500

G
en

er
at

ed
 s

et
s

Maximum coverage per sensor

BGOP Slijepcevic

Fig. 4. 3rd scenario (1000 sensors, 5000 fields): Number of produced sets

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor network: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–
422, 2002.

[2] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proc. of Interna-
tional Workshop on Wireless Sensor Networks and Applications. ACM,
September 2002, pp. 88–97.

[3] L. Hai, P. Wan, C.-W. Yi, J. Xiaohua, S. Makki, and N. Pissinou,
“Maximal lifetime scheduling in sensor surveillance networks,” in Proc.
of INFOCOM 05, vol. 4. IEEE, March 2005, pp. 2482–2491.

[4] A. Goldsmith and S. Wicker, “Design challenges for energy-constrained
ad hoc wireless networks,” Wireless Communications, IEEE, vol. 9,
no. 4, pp. 8–27, August 2002.

[5] S. Slijepcevic and M. Potkonjak, “Power efficient organization of
wireless sensor networks,” in Proc. of International Conference on
Communications (ICC’01). IEEE, June 2001, pp. 472–476.

[6] M. Cardei and D.-Z. Du, “Improving wireless sensor network lifetime
through power aware organization,” ACM Wireless Networks, vol. 11,
no. 3, pp. 333–340, 2005.

[7] M. Cardei and J. Wu, “Energy efficient coverage problems in wireless
ad hoc sensor networks,” Computer Communications, vol. 29, no. 4, pp.
413–420, 2006.

[8] M. Cardei, D. MacCallum, M. X. Cheng, M. Min, X. Jia, D. Li, and
D.-Z. Du, “Wireless sensor networks with energy efficient organization,”
Journal of Interconnection Networks, vol. 3, no. 3-4, pp. 213–229, 2002.

[9] M. T. Thai, F. Wang, H. Du, and X. Jia, “Coverage problems in wireless
sensor networks: Designs and analysis,” International Journal of Sensor
Networks, to appear, 2006.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[11] Z. Abrams, A. Goel, and S. Plotkin, “Set k-cover algorithms for energy
efficient monitoring in wireless sensor networks,” in Proc. of Third
International Symposium on Information Processing in Sensor Networks.
ACM, 2004, pp. 424–432.

[12] M. Cardei, M. Thai, Y. Li, and W. Wu, “Energy-efficient target coverage
in wireless sensor,” in Proc. of INFOCOM 05, vol. 3. IEEE, March
2005, pp. 1976–1984.

[13] P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky, “Power efficient
monitoring management in sensor networks,” in Proc. of Wireless
Communications and Networking Conference, vol. 4. IEEE, March
2004, pp. 2329–2334.

[14] N. Garg and J. Könemann, “Faster and simpler algorithms for multi-
commodity flow and other fractional packing problems,” in Proc. of
39th Annual IEEE Symposium on Foundations of Computer Science.
IEEE, November 1998, pp. 300–309.

[15] D. Tian and N. D. Georganas, “A coverage-preserving node scheduling
scheme for large wireless sensor networks,” in Proc. of 1st ACM
International Workshop on Wireless Sensor Networks and Applications.
ACM Press, September 2002, pp. 32–41.

[16] F. Y. Zhong, G. S. Lu, and L. Zhang, “Peas: a robust energy conserving
protocol for long-lived sensor networks,” in Proc. of 10th IEEE Inter-
national Conference on Network Protocols, 2002, pp. 200–201.

