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Abstract

To achieve power efficient monitoring of targets by sensor networks,
various coverage algorithms have been proposed. These algorithms di-
vide the sensor nodes into cover sets, where each cover set is capable of
monitoring all targets. Generating the maximum number of cover sets
has been proven to be an NP-complete problem and, thus, algorithms
producing sub-optimal solutions have been proposed. In this paper we
present a novel and efficient coverage algorithm, that can produce both
disjoint cover sets, i.e. cover sets with no common sensor nodes, as well as
non-disjoint cover sets. While searching for the best sensor to include in
a cover set, our algorithm uses a cost function that takes into account the
monitoring capabilities of a sensor, its association with poorly monitored
targets, but also the sensor’s remaining battery life. Through simula-
tions, we show that the proposed algorithm outperforms similar heuristic
algorithms found in the literature, producing collections of cover sets of
optimal (or near-optimal) size. The increased availability offered by these
cover sets along with the short execution time of the proposed algorithm
make it desirable for a wide range of node deployment environments.

1 Introduction

Wireless Sensor Networks (WSNs) are used extensively in many domains, such
as military applications [2], environmental monitoring [13], target surveillance
[12] and disaster prevention [11]. Each WSN node is equipped with at least one
sensing module and one communication module, which enable the collection of
monitoring data and their transmission to a base station, which is situated in
close proximity to the WSN. The base station may be a desktop computer or a
laptop.

Depending on the application and the environment, node deployment and
placement can be realised either in a predefined way or randomly. In hostile
environments, for example, sensors may be dropped from an aeroplane, resulting
in a random placement, where the node density cannot be guaranteed; some
areas may contain more sensors than others.
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WSN nodes have three modes of operation. In the active mode, a sensor can
observe the environment and communicate with other sensors (or with the base
station). In the sleep mode, a sensor cannot monitor or transmit data. The
node can change to the active mode, whenever it receives the appropriate signal
(either from another sensor or from the base station). Obviously, in the sleep
mode a sensor consumes much less energy than in the active mode. Finally, in
the off mode, the nodes are completely turned off.

Sensors have a limited battery life. If all sensors in a terrain were to be
activated at the same time, the lifetime of the network would be equal to the
lifetime of a single sensor (supposing that all sensors have almost equal energy
resources), say h hours. Clearly, if the uptime of each sensor could be pro-
grammed in an efficient and practical way, the lifetime of the WSN could be
possibly extended. In order to achieve this lifetime extension, the nodes must
be divided into a number of subsets, called cover sets, where each cover set is
capable of covering all the monitored targets. Sensors belonging to a scheduled
cover set are in active mode, while the others are in sleep mode. If the cover sets
are disjoint, then each sensor is allowed to participate only in one cover set, and,
thus, each set has a maximum lifetime of h hours. By periodically switching
between cover sets, we can extend the target coverage time to |C| ·h, where |C|
is the number of available cover sets. If the cover sets are non–disjoint sets,
then any given sensor may participate in more than one cover sets. In this case,
the time spent on each scheduled cover set is shortened so as to allow for sensors
to participate in multiple sets. In several sensor deployment scenarios, it has
been shown that the use of non-disjoint cover sets, may increase the lifetime of
the network, if proper scheduling algorithms are used [6].

Figure 1: Example topology for sensors and monitored targets

To illustrate the above observation, let us assume that the three targets
(T1, T2, and T3) in Figure 1 lie on a field that can be monitored by three
sensor nodes (S1, S2, and S3). Node S1 covers targets T1 and T2, node S2
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covers T1 and T3 and node S3 covers T2 and T3. If all the sensor nodes were
to be activated simultaneously, then the network lifetime would be equal to the
standard lifetime h of a single sensor. By dividing the sensors into disjoint sets,
the resulting network lifetime would still be h, since for this topology a disjoint
algorithm can produce only one cover set (e.g. C1 = {S1, S2}).

Figure 2: Three generated non-disjoint cover sets

However, if a sensor node in Figure 1 can be part of two cover sets, then the
network lifetime can be extended. By creating three non-disjoint cover sets (see
Figure 2), each one activated for 0.5 · h hours, the total network lifetime can
be extended to 1.5 · h, assuming that the energy consumption during the sleep
mode is negligible.

Coverage problems are divided into point coverage and area coverage. The
objective in point coverage is to cover (monitor) a set of points with a subset of
the available sensor nodes [4]. Every point is monitored by at least one sensor.
In the area coverage problem, the monitored space is divided into smaller areas
called fields [14]. Each field is uniquely identified by a set of covering sensors
that completely cover this field. The goal in area coverage is to produce cover
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sets of sensors that completely cover all the fields and, consequently, the entire
area. As described in [4], the area coverage problem is closely linked to the
point coverage problem, since the fields are equivalent to the points mentioned
previously1.

In this paper, we propose a novel centralised coverage algorithm, which can
produce both disjoint and non–disjoint cover sets. The algorithm is based on a
generic methodology for centralised coverage algorithms that we analyse in Sec-
tion 3. Its main characteristic is a node selection policy that takes into account
the monitoring capabilities of a sensor, its association with poorly monitored
targets, but also the sensor’s remaining battery life. This policy, described in
Section 4, allows for the generation of cover sets in an efficient manner. Fur-
thermore, we simulate the proposed algorithm and compare it to the algorithms
of [14] and [6], with respect to the number of generated sets and execution time.
Our findings, presented in Section 5, demonstrate results close to the optimal
solution in the number of generated sets. Moreover, the proposed algorithm
shows improved performance in comparison to similar approaches found in the
literature.

Thus, the proposed algorithm extends the availability of sensor networks
in two aspects. First, by extending the number of cover sets, it increases the
actual coverage time; and, secondly, by producing multiple cover sets it provides
high redundancy in terms of target coverage. The latter can be a very desirable
characteristic, especially in hostile node deployment environments.

2 Related Work

Cardei and Wu [7] provide a taxonomy of sensor coverage algorithms according
to several design criteria, such as:

1. The coverage objective, i.e. to maximise the lifetime of the network or to
minimise the required number of deployed sensors.

2. The node deployment method, which may be random or deterministic.

3. The homogeneous or heterogeneous nature of the nodes, i.e. whether all
nodes have a common sensing or communication range.

4. The degree of centralisation, i.e. centralised vs distributed algorithms,
and

5. additional requirements for energy efficiency and connectivity.

An additional criterion that can be added to the above list is the cover set
independence, i.e. whether a node appears in exactly one of the generated sets
(as in the case of node disjoint coverage algorithms) or not (as in the case of
non-disjoint coverage algorithms).

1The term target coverage is used throughout this text to refer to either area or point
coverage scenarios.
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Below we describe existing coverage algorithms that can be used in random
sensor deployment scenarios with homogeneous device characteristics in terms
of battery lifetime.

2.1 Centralised Coverage Algorithms

In a centralised coverage algorithm the monitoring schedule is first calculated
on the base station and it is then sent to the sensor nodes for execution. The
advantage of this scheduling approach is that it requires very low processing
power from the sensor nodes, which usually have limited processing capabilities.

2.1.1 Disjoint Centralised Algorithms

Slijepcevic and Potkonjak [14] propose a disjoint centralised algorithm for the
area coverage problem. They introduce the idea of the field as a set of targets.
Two targets belong to the same field if and only if they are covered by the same
set of sensors. In particular, the fields are small areas which are produced by
the intersection of the coverage limits of sensors and/or the physical limits of
the monitored terrain. Every sensor may cover one or more fields and one field
is covered by at least one sensor. Their proposed algorithm initially covers the
more sparsely populated fields (i.e. the fields that are covered by the smallest
number of sensors), which are called critical fields. After the selection of a node
that covers a critical field, the algorithm excludes all other nodes covering the
same field. Thus, it is assured (during the construction of a cover set) that only
one node covering a particular critical field shall be selected. The authors state
that the complexity of the algorithm is O(n2), where n is the total number of
sensors.

Cardei et al. [5] propose an algorithm to solve the same problem using
graphs. They construct an undirected graph G = (V,E), where V is the set of
sensors and E the set of edges, such that the edge (u, v) ∈ E if and only if u
and v are within each other’s sensing range. The goal is to find the maximum
number of “dominating sets”. To achieve this the authors use a graph colouring
technique. As depicted in [15], despite the production of more sets than [14],
the dominating sets do not guarantee the coverage of the whole area. The
complexity of the heuristic which computes the disjoint sets from the coloured
graph is O(n3).

Cardei and Du [4] propose an algorithm in order to solve the random target
coverage problem. This problem is successively formulated as an area coverage
problem, which is proved to be an NP-Complete problem. Cardei and Du define
the disjoint-set coverage problem, that was first introduced by Slijepcevic and
Potkonjak [14], as a generalisation of the 3-SAT problem [9]. They propose
a heuristic to compute the disjoint sets. In order to compute the maximum
number of covers, they transform the problem into a maximum-flow problem.
Then, the result of the maximum-flow problem is solved using Mixed Integer
Programming, which heuristically produces the final number of cover sets. The
results in [4] show a slight improvement in the number of produced sets in
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comparison to [14] but there is a substantial delay in execution time. The
complexity of this algorithm depends on the complexity of the mixed integer
programming technique used.

Abrams et al. [1] propose a centralised algorithm utilising randomisation to
solve the coverage problem. Each generated cover set does not provide complete
coverage of targets and the cover sets must be scheduled successively in order
to achieve an 80% coverage of the monitored areas. The complexity of this
algorithm is O(nm|Pmax|), where n is the number of sensors available, m the
number of generated cover sets and |Pmax| the maximum number of fields that
a sensor covers.

2.1.2 Non-disjoint Centralised Algorithms

In the case of non-disjoint algorithms, nodes may participate in more than
one cover sets. In some cases, this may prolong the lifetime of the network in
comparison to the disjoint cover set algorithms, but it incurs a higher complexity.

Cardei et al. [6] propose a Linear Programming (LP) solution to the tar-
get coverage problem for non-disjoint cover sets. Although the LP algorithm
presents a high complexity O(m3n3), where m is the number of covers and n
the number of sensors, the authors also propose a greedy algorithm, with a
lower complexity O(dk2n), where d is the number of sensors that cover targets
that are associated with a minimum number of sensors and k is the number of
targets.

Another LP technique is proposed by Berman et al. [3]. The authors first
compute a series of cover sets and then they deduce the optimal lifetime for each
cover set. Their approach is based on the (1+ε)-approximation of the Garg and
Könemann algorithm [10], with an approximation factor of (1 + ε)(1 + 2 lnn) for
any ε > 0.

2.2 Distributed Coverage Algorithms

In distributed coverage algorithms a number of sensor nodes perform the re-
quired calculations cooperatively and, then, these nodes disseminate the schedul-
ing information to the rest of the sensors. These schemes may require some
processing by the sensors involved, but they scale better to accommodate larger
networks.

Several distributed algorithms have been proposed in the literature [16, 18,
17, 8]. These approaches use a distributed and localised scheduling scheme, in
order to rapidly disseminate the scheduling information throughout the network.
The nodes decide cooperatively in an effective way, which of them will remain
in sleep mode for a certain period of time. There are extra costs associated with
this type of algorithms, due to the increased overhead in message exchanges and
the need for synchronisation of participating nodes. Note that in this paper we
focus on centralised algorithm problems and, thus, distributed algorithms are
outside the scope of our work.
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3 Problem Description

In this section, we describe a generic model for centralised coverage algorithms.
This model is suitable for full coverage algorithms, i.e. algorithms that produce
cover sets capable of monitoring all targets, provided that each target is moni-
tored by at least one sensor. In the following section, we will use this model in
order to describe the proposed solution.

3.1 Problem Parameters

Let T0 = {t1, t2, . . . , tk} be the set of targets and S0 = {s1, s2, . . . , sn} the set
of sensor nodes. Each target in T0 is covered by at least one sensor node in S0.

Each sensor may have a number of sensing capabilities. The minimum sens-
ing range of these capabilities is Rs. We assume that any target lying within
the circle defined by the location of a sensor (circle centre) and range Rs (circle
radius) can be monitored by this sensor.

We call Ni the set of “neighbour-sensors” of target ti. Each neighbour sensor
sj ∈ Ni is capable of monitoring the target ti, i.e.:

∀ sj ∈ Ni : |ti − sj | ≤ Rs, Ni ⊆ S0, ti ∈ T0,

where |ti − sj | denotes the distance between target ti and sensor sj .
The input I of a coverage algorithm is a set of tuples of the form:

I = {(t1, N1), . . . , (tk, Nk)}, ti ∈ T0, k = |T0|,

where Ni is the set of “neighbour-sensors” of target ti. The set I contains one
tuple per target in T0. It must be noted that a specific sensor may appear in
more than one “neighbour-sensor” sets.

The coverage algorithm produces a collection C = {C1, . . . , Cm} of m “cover
sets”. Each cover set Cp is a subset of the available sensors (Cp ⊆ S0) and it
must cover all targets found in T0. The number of occurrences w (w ∈ N∗) of
a sensor in the output cover sets, depends on the type of the algorithm. In a
node-disjoint algorithm, each sensor is allowed to participate only in one cover
set (w = 1), i.e.:

∀ i, j : Ci ∩ Cj = ∅, i, j ∈ [1,m], i 6= j.

For non-disjoint algorithms, a node can be part of multiple cover sets, i.e. w > 1.
The objective of a coverage algorithm is to extend the lifetime of the network

by maximising |C|, where |C| is the cardinality of the generated collection C of
cover sets.

3.2 Generating Cover Sets

As described in Section 2, there exist a number of approaches that deal with
the cover set generation problem in sensor networks. One of these, the greedy
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heuristic approach, examines only a subset of all possible solutions of a given
instance of the problem, but it is capable of producing near-optimal results in a
relatively short amount of time. In this subsection we present the steps followed
by a greedy heuristic algorithm when generating cover sets.

Figure 3 shows the general structure of a centralised greedy coverage algo-
rithm. The algorithm consists of two nested loops. The outer loop checks for
the availability of sensors (step 3) while the inner loop checks for the existence
of targets that have yet to be covered by the sensors of a given cover set (step 7).

The algorithm selects one sensor at a time for inclusion to a cover set (step 8).
A cover set is considered complete once it contains the necessary sensors to cover
all targets (step 7). Each complete cover set is added to the cover set collection
(step 15). The algorithm terminates (step 16) returning the cover set collection,
when there are no more available sensors to use (steps 3, 9).

Are there any
sensors available

 in Savail?

Create new cover set
Ci = ∅

Return cover set
collection C

Initialise set of
uncovered targets

Tcur = T0

Remove Target(s)
covered by sj

from Tcur

Is Ci the last
cover set
to use sj?

Search Scur for
a sensor sj

 covering target(s)
from Tcur

Is Tcur empty?Remove sj from Savail

Add sj to cover set Ci

Add cover set Ci
to cover set
collection C

Yes

No

Yes

No

No

Found appropriate
sensor?

Yes

Initialise cover set
collection C = ∅

NoYes

(3)

(1)

(5)

(7)

(8)

(9)
(10)

(12)

(13)

(14) (15)

(16)

Initialise set of
per-cover-set

available sensors
Scur = Savail

Remove sj from Scur

(4)

(6)(11)

Initialise set of
available sensors

Savail = S0

(2)

Figure 3: Generating cover sets with the greedy heuristic approach

Two sets are used to keep track of the available sensors. The first one,
Savail, holds the sensors that will be available for use in future cover sets. The
second one, Scur, holds the sensors that are available for use in the current
cover set. To avoid multiple inclusions of a particular sensor in a cover set, a
sensor is immediately removed from Scur once it has been selected. In algorithms
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producing non-disjoint sets, step 12 checks if the selected sensor will be available
(i.e., it will have the necessary power) for use in other sets apart from the one
currently being built. If this is not the case, then that sensor must be removed
from the set of available sensors Savail (step 13). In node-disjoint set generation,
each sensor is only used once in the generated cover sets and, thus, sensors are
immediately removed from Savail, once they have been used.

The number of sets generated depends on the sensor selection strategy em-
ployed in step 8. In the following subsection we discuss the various parameters
that node selection strategies must take into account in order to assist in the
production of more cover sets.

3.3 Maximising the output

3.3.1 Finding the upper bound

The target with the smallest “neighbour-sensor” set places an upper bound
on the number of generated cover sets. If the smallest “neighbour-sensor” set
includes x sensors, then a coverage algorithm can produce at most x×w cover
sets. We call this upper-bound, the theoretical maximum, which can be trivially
computed from the input I of the algorithm. The theoretical maximum can serve
as a hint for both heuristic and “branch & bound” algorithms, signifying the
point where the algorithm has developed an optimal (or near optimal) solution
and no further searching is required.

Unfortunately, the theoretical maximum does not always provide the actual
maximum number of sets that can be generated for a given input I. As described
above, once all the sensors from small “neighbour-sensor” sets have been used
(w times each), the algorithm will not be able to produce any other cover sets.
We will call targets that are associated with such small “neighbour-sensor” sets,
Critical Targets. When selecting the next sensor to be added to the currently
generated cover set, there is a higher probability that this sensor will cover a
Critical Target if the network is densely populated (i.e., a sensor covers many
targets) rather than sparsely populated (i.e., each sensor covers few targets). It
is, thus, possible for a cover set of a dense network to include more than one
neighbours of a given Critical Target. Each additional neighbour used, that
covers the same Critical Target, shrinks by one the total number of generated
cover sets. The algorithm will quickly run out of sensors covering this Critical
Target and it will eventually produce less cover sets than the theoretical maxi-
mum. There is no efficient way, to the best of our knowledge, of pre-calculating
the maximum possible number of cover sets, without actually trying all sensor
combinations.

3.3.2 Managing the Critical Targets

One can limit the number of sensors covering Critical Targets within a cover set
by first selecting a sensor covering the most Critical Target and then making sure
not to select any other sensor from this target’s “neighbour-sensor” set. This
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method, introduced by [14], requires a search for unused sensors covering Critical
Targets, each time a new cover set needs to be generated. A different approach
is to sort candidate nodes according to a cost function that incorporates a weight
describing the number of Critical Targets a sensor covers. In this way, a cover
set generation routine can use the sorted candidate list to select a node that
covers the least number of Critical Targets possible. This is the approach used
in our work. It adds flexibility to the algorithm in the cases where choosing
more than one sensors covering Critical Targets is the only way of generating
more cover sets.

A coverage algorithm terminates either when it has reached the theoretical
maximum number of generated cover sets, or when it has run out of sensors
capable of covering the given set of targets. Running out of sensors is not
attributed only to Critical Targets though. A poor selection of sensors may cause
targets to be double (or even triple) covered with auxiliary sensors that could
have been used elsewhere more appropriately (and would have, thus, helped in
the generation of more cover sets). Therefore, each cover set must contain a
minimal amount of sensors, leaving as many sensors as possible available for the
next cover sets to utilise.

3.3.3 Selecting the appropriate candidate

While selecting the appropriate sensor for a cover set, the sensor selection routine
has to deal with different types (classes) of sensors. Each class is characterised by
its coverage status over the already covered and uncovered targets (see Figure 4).
Following the naming convention introduced in [19], we use the following 4
classes of sensors:

• class Best: The sensor covers all uncovered targets and none of the
already covered ones.

• class Good: The sensor covers a subset of the uncovered targets and
none of the already covered ones.

• class OK: The sensor covers all of the uncovered targets and a subset (or
all) of the already covered ones.

• class Poor: The sensor covers a subset of the uncovered targets and a
subset (or all) of the already covered ones.

Members of the Best class are always the preferred candidates for inclusion
in cover sets. If no member of the Best class exists, the selection routine must
try one of the other classes. We cannot enforce a strict ordering of preference
(e.g. Good→ OK → Poor) in the other classes, because the results produced
turn out to be far from the optimum. To clarify this point, one may consider
a scenario where it is obviously preferable to select a Poor sensor, covering
one already covered target and five uncovered, rather than a Good sensor cov-
ering just one uncovered target. Thus, instead of enforcing a strict order of
preference according to class, it is preferable to integrate the class information
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A B C D E F

Targets Already
Covered

Targets Not
Covered Yet

S1 : Best

A B C D E F

S2 : Good

A B C D E F

S3 : OK

A B C D E F

S4 : Poor

Figure 4: The four classes of sensor candidates: Best, Good, OK and Poor

(uncovered/covered targets) within a cost function. Thus, the node selection
strategy becomes more agile, avoiding double-covers and promoting nodes that
cover as many uncovered targets as possible.

4 The proposed algorithm

The key characteristic of the proposed algorithm is a uniform node selection
strategy that tries to select the smallest possible number of nodes that cover
Critical Targets. To achieve this, the algorithm uses a cost function, called
Critical Control Factor - CCF, that takes into account the coverage status of
sensor candidates, their relation to Critical Targets, and their remaining battery
life.

The proposed algorithm is based on our previous work, the B{GOP} algo-
rithm of [19], but it improves it in two significant ways; firstly, the CCF-based
algorithm is capable of producing both non-disjoint and disjoint cover sets.
Secondly, its enhanced cost function (CCF) considers additional node charac-
teristics such as the remaining battery life of sensors.

Two variations of the algorithm are described. The Static–CCF algorithm,
uses a weight to describe the association of a sensor to Critical Targets. This
weight is computed only once per sensor, in the beginning of the algorithm, and
it remains constant, until the termination of the algorithm. On the other hand,
in the Dynamic–CCF variation, the weight changes dynamically, mirroring the
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changes happening to the set of Critical Targets during the execution of the
algorithm. This requires the recalculation of Critical Targets each time a new
cover set is constructed. The dynamic approach is more commonly found in
the literature and hence we developed the second variation, for the purpose of
testing this in combination with the cost function of Static–CCF.

4.1 Static–CCF

4.1.1 Setup

During the setup phase, Static–CCF uses input I (see Section 3.1) to construct
the following auxiliary constants:

• The initial target set T0.

• The initial sensor set S0.

• The “neighbour-sensor” set Ni of sensors covering the target ti ∈ T0.

• The “target-coverage” set Pj for each sensor sj ∈ S0, containing the tar-
gets sensor sj is capable of monitoring, i.e. ti ∈ Pj iff sj ∈ Ni.

• The maximum number of sensors per “neighbour-sensor” set,
µ = max(|N1|, . . . , |Nk|), k = |T0|.

• The badness attribute Bj , which measures the accumulative criticality
of the targets covered by sensor sj . The badness attribute is computed
according to the following formula:

Bj =

|Pj |∑
i=1

(µ− |Ni|+ 1)
3
,

where Ni is the “neighbour-sensor” set of the i-th element of the “target-
coverage” set Pj . This attribute is further analysed in section 4.1.3.

• The maximum badness: Bmax = max(B1, . . . , Bn), n = |S0|.

• The theoretical maximum number of possible generated sets,
max sets = w ·min(|N1|, . . . , |Nk|), k = |T0|.

During the execution of the algorithm, set L keeps track of the available
battery life of each sensor. Initially, all the sensors have a battery life of w sets,
assuming that all generated sets will provide coverage for the same amount of
time.
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4.1.2 Description

The Static–CCF algorithm is a greedy heuristic, mapped to three nested loops:
the “Sensor availability check” loop, the “Uncovered target check” loop and the
“Sensor applicability check” loop (see Algorithm 1).

The “Sensor availability check” loop is responsible for adding cover sets to
the collection C, provided that there are still sensors available to utilise. It
creates an empty cover set Ccur and it initialises the set of currently uncovered
targets Tcur (with the targets found in T0) and the set of currently available
sensors Scur (with the sensors found in Savail). It then passes control to the
“Uncovered target check” loop which is responsible for populating the cover set
Ccur with sensors. Once Ccur has been populated, it is added to the collection
C. If the algorithm detects that it has generated the maximum number of
possible cover sets (max sets) or it has run out of available sensors, it stops
searching for further sets and it returns the current collection of cover sets C.

The “Uncovered Target Check” loop is responsible for selecting a sensor node
from a set of candidates. Once the best candidate has been selected (“Sensor
Applicability Check” loop), it is removed from the currently available sensors set
Scur and it is added to the current cover set Ccur. Additionally, all the targets
monitored by this sensor are removed from Tcur. If the selected sensor’s battery
life does not permit its use in other cover sets, then the sensor is removed from
Savail (the set of available sensors for use in future cover sets). The “Uncovered
Target Check” loop exits when there are no more targets to cover, thus signifying
that the cover set Ccur is ready for inclusion in the collection C.

The “Sensor Applicability Check” loop is responsible for sorting node candi-
dates and for selecting the top scoring nodes according to the CCF cost function.
The objectives of the CCF cost function are threefold:
a) to promote candidates that cover as few already covered targets as possible
(thus minimising the probability of double-covering a target),
b) to minimise the probability of selecting critical nodes (i.e., nodes that cover
Critical Targets), and
c) to promote candidates that have more battery time available.

CCF (Tcur, Pj , Bj , Lj) = α · coverage(Pj , Tcur)
|Tcur|

+β ·
(

1− Bj
Bmax

)
+γ · Lj

w
.

The coverage function used in CCF describes the coverage status of a sensor,
i.e. it measures the number of uncovered targets in relation to the number of
already covered targets the sensor monitors. It is computed by the following
formula:

coverage(Pj , Tcur) =
uncovered

(covered + 1)r
=

freq(Pj , Tcur)

(freq(Pj , T0) − freq(Pj , Tcur) + 1)r
,

where uncovered is the number of targets covered by the sensor that have not
been covered previously, covered is the number of already covered targets the
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sensor is capable of covering and r = 1 − |Tcur|
T0

. To test the coverage status of
a sensor and compute the uncovered and covered values, the utility function
freq(Pj , T ) is used, which counts the targets in T that a sensor sj covers, i.e.
freq(Pj , T ) = |Pj ∩ T |. The coverage function is analysed in Section 4.1.3.

The weights α, β and γ remain constant throughout the execution of the
algorithm, with α, β, γ ∈ (0, 1) and α+ β + γ = 1. Their values can be tuned
according to the nature of the examined problem and are further examined in
Section 4.1.3.

The CCF function is always called for sensors that cover at least one of

the remaining targets, and thus
coverage(Pj ,Tcur)

|Tcur| ∈ (0, 1]. Furthermore, CCF

is not called for sensors that have exhausted their battery life on previously

created cover sets, hence
Lj

w ∈ (0, 1]. Since
(

1− Bj

Bmax

)
∈ [0, 1), it follows that

CCF (Tcur, Pj , Bj , Lj)→ (0, 1).

4.1.3 Parameter analysis

The badness attribute. In the CCF algorithm we do not classify targets as
Critical and non-Critical. Instead, we evaluate the criticality level of each target
by measuring the number of sensors in its associated “neighbour-sensor” set. In
this way, a target covered by x sensors is considered less critical than a target
covered by x− 1 sensors.

The badness attribute of a sensor describes the accumulative criticality level
of all targets covered by this sensor. We can use this attribute to prioritise the
selection of sensor nodes that exhibit a low badness value (i.e., they are not as
heavily associated with highly critical targets).

As mentioned in Section 4.1.1, the badness attribute of sensor s is computed
according to the following formula:

Bs =

|Ps|∑
i=1

(µ− |Ni|+ 1)
3

where Ni is the “neighbour-sensor” set of the i-th element of the “target-
coverage” set Ps, and µ is the maximum number of sensors per “neighbour-
sensor” set, i.e. µ = max(|N1|, . . . , |Nk|), k = |T0|.

The major component of the badness attribute, the criticality of a target ti,
is measured through µ − |Ni|, since a target with a small “neighbour-sensor”
set is more critical than a target with a larger “neighbour-sensor” set. We add
one to this value, so that even targets with the maximum number of sensors in
their “neighbour-sensor” set, will receive a positive criticality value.

The badness attribute of a sensor is the sum of criticality values of all targets
covered by this sensor. By raising µ − |Ni| + 1 to the power of 3, we decrease
the probability of two or more sensors having the same badness value, since
we expand the range of possible badness values. Such a collision would not be
acceptable, since it could lead to random node selections among sensors that
have the same badness value but cover targets with different levels of criticality.
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Obviously, the appropriate power value depends on the problem parameters
(number of sensors, number of targets, coverage status of targets). Through
simulations we have found that the power of 3 is acceptable for most realistic
scenarios. In table 1 we show the relation between the power value and the
number of unique badness values generated for two sensor deployment scenarios.
The first scenario consists of 350 sensors covering 40 targets in a 2-dimensional
terrain of 600m2, while the second scenario consists of 500 sensors and 50 targets
in a 3-dimensional terrain of 800m3.

Table 1: Measurements of the badness attribute in a 2-dimensional and a 3-
dimensional scenario

2d scenario 3d scenario
Power Min. Max. Number of Min. Max. Number of

badness badness unique values badness badness unique values
1 4 180 91 177 984 244
2 16 4278 147 4906 75512 304
3 64 113256 150 127236 6853916 304
4 256 3570050 150 3563194 664514348 304
5 1024 124952816 150 overflow

The coverage function. As described in the previous section, the coverage
function describes the coverage status of a sensor and it is computed as follows:

coverage(Ps, Tcur) =
uncovered

(covered + 1)r
.

The objectives of the coverage function are (i) to promote nodes that cover
as many uncovered targets as possible, and (ii) to penalise nodes that cover
already covered targets (thus avoiding the double-covering of targets). Obvi-
ously, the two objectives are satisfied from the fraction uncovered

covered+1 (we add one
to the denominator to avoid division by zero). Moreover, the use of the expo-

nent r = 1 − |Tcur|
|T0| (with r ∈ (1, 0]) gradually increases the penalty of nodes

that cover already covered targets as the algorithm starts dealing with targets
of higher criticality. Since our algorithm prioritises the selection of nodes that
cover targets of lower criticality, it processes targets of higher criticality at a
latter stage (i.e. when r converges to 1).
The CCF weights. The weights α, β and γ are constants, with α, β, γ ∈ (0, 1)
and α+ β + γ = 1. Their values can be tuned according to the nature of the
examined problem. For example, by increasing α, the algorithm pays more
attention to the coverage status of sensors and produces cover sets with a smaller
number of nodes. A larger β value would make the algorithm less tolerant to
the selection of nodes that cover highly critical targets, while a larger γ value
would prioritise the selection of nodes with a higher remaining lifetime.

Figure 5 shows the relation between α, β and the number of generated sets
|C| for two deployment scenarios. The γ value is equal to 1− α − β. The first
scenario, shown in Figure 5a, is an example of dense sensor deployment, with
350 sensors covering 40 targets in a 2-dimensional terrain of 361m2, while the
second scenario (Figure 5b) is an example of sparse sensor deployment, using
the same number of sensors and targets in a larger terrain of 961m2.
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Figure 5: Relation between α, β and the number of generated sets (z-colour) in
dense (a) and sparse (b) node deployment scenarios

To limit the number of tests needed in order to find the optimal values for α
and β for a given scenario, one may divide the triangular solution space into sub-
triangles and examine their centroids, as representative points of the solution
space occupied by each sub-triangle. Once a centroid has been selected for
evaluation, its corresponding α and β values will be fed to the coverage algorithm
and the number of generated cover sets will be recorded (centroid score). The
next step would be to further subdivide each of the sub-triangles. A best-first
technique may be applied here, dividing first the triangle with the highest scoring
centroid. The subdivision may continue for a number of user-specified rounds,
or until a satisfactory solution has been reached (e.g. a combination of α and
β that yields the theoretical maximum number of generated sets). Ultimately,
the output of this process will be the coordinates of the centroid (i.e. the values
of α and β) that was responsible for the highest number of generated sets.

In both scenarios of Figure 5, we can see that the optimal values for α and β
are clustered together in a single subregion of the solution space. Also, solutions
that lie near to this subregion tend to produce a greater number of generated
sets than the ones that lie further away from it. From these two observations we
can deduce that a local optimum search strategy may be sufficient for finding
the optimal values for α and β, in scenarios similar to those presented in Figure
5.

Table 2 shows the number of iterations needed by a local optimum search
heuristic in order to produce the optimal values for α and β (i.e. the values
that will result in the production of the maximum number of generated sets)
in scenarios with 350 sensors, 40 targets and variable terrain size. In each
iteration, the heuristic divides a triangle into 6 sub-triangles (2 for each median)
and evaluates their centroids. The triangle with the highest scoring centroid
becomes the triangle that will be examined in the next iteration. Table 2 shows
that this approach is capable of finding optimal values for α and β, using only
a small number of iterations and thus, in a relatively small amount of time.
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Table 2: Number of local optimum search iterations needed in order to achieve
the theoretical maximum number of cover sets in a 2-dimensional scenario with
350 sensors, 40 targets and variable terrain size

Terrain Size Number of Local optimum search
m2 iterations exec. time (sec)
361 2 5.76
484 1 2.20
625 2 3.65

778.4 1 1.52
961 1 1.34
1156 1 1.18
1369 1 1.26
1600 4 4.88
1764 2 1.53
1989 1 1.05

4.1.4 Algorithm Analysis

In order to select a single sensor for inclusion in a generated set, the algorithm
must test all available sensors for their monitoring capacity over the currently
uncovered targets. Once a sensor with a suitable monitoring capacity has been
chosen, the remaining sensors will be tested with regard to the targets the
previously chosen sensor had left uncovered. Once a generated set is complete
(i.e., it covers all the targets), the algorithm will start building a new set and it
will re-initialise the set of uncovered targets Tcur to the initial set of targets T0.

The algorithm will terminate either when it has run out of sensors (Scur = ∅)
or when it has reached the maximum number of possible generated sets (|C| =
max sets). As explained in Section 3, the theoretical maximum number of
generated sets is sometimes impossible to achieve, since the algorithm exits
prematurely, as it has no more sensors to utilise. Hence, the total number
of available sensors introduces an upper bound to the execution time of the
algorithm. The longest run of Static–CCF would have included all available
sensors in the generated sets and would have used each sensor w times. In that
case, the time taken to produce the generated sets from n sensors and k targets
would have been proportional to the following product:

w

n−1∑
i=0

(n− i)(k − i mod k), where n = |S0|, k = |T0|.

We can, thus, deduce that the total running time of the Static–CCF algorithm
is O(wn2k).

Proposition:
Static–CCF is capable of generating at least one cover set, if one exists.

Proof :
If G is a cover set, then:

∀ ti ∈ T0, ∃ sj ∈ G : ti ∈ Pj , (1)

where G ⊆ S0, G 6= ∅, Pj ⊆ T0 and Pj 6= ∅.
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Let us suppose that a set G does exist (covering all the targets in T0 with
sensors from S0) but our algorithm has failed to produce a cover set. This means
that during the construction of the first cover set, the algorithm failed to find a
sensor sj capable of covering a subset of Tcur, i.e.,

∀ti ∈ Tcur,@sj ∈ Scur : ti ∈ Pj . (2)

The set Ccur contains the sensors already selected for inclusion in the cover
set. Since this is the algorithm’s first attempt to construct a cover set, all sensors
not found in the current sensor set Scur are members of Ccur, i.e.

S0 = Ccur ∪ Scur, Ccur ∩ Scur = ∅. (3)

All targets covered by sensors in Ccur have been removed from the current point
set Tcur. Hence from (3) we have:

∀ti ∈ Tcur,@sj ∈ Ccur : ti ∈ Pj . (4)

¿From (2), (3), (4) we have:

∀ti ∈ Tcur,@si ∈ S0 : ti ∈ Pj . (5)

Statement (5) is false, since we can rewrite (1) for Tcur ⊆ T0 and G ⊆ S0, as
follows:

∀ti ∈ Tcur,∃sj ∈ S0 : ti ∈ Pj . (6)

Thus, our initial hypothesis proves to be false; if a solution to the coverage
problem exists, Static–CCF will have a sufficient number of sensors to generate
at least one cover set. �

4.1.5 Optimisations

During the “Sensor Applicability Check” (see Algorithm 1) the freq(P, T ) func-
tion is used to measure the coverage status of a sensor with respect to the
current and initial sets of targets (i.e., freq(Ps, Tcur) and freq(Ps, T0) respec-
tively). Function freq(P, T ) calculates the number of members found in the
intersection of sets P and T which requires at least min(|P |, |T |) checks2. By
minimising the number of unnecessary calls to freq(P, T ), the total execution
time of the algorithm can be reduced.

The initial number of targets a sensor covers (freq(Ps, T0)) can be computed
during the Setup phase, since it remains constant throughout the algorithm
runtime.

Instead of calculating the current coverage freq(Ps, Tcur) upon request, we
can have this value pre-calculated, whenever Tcur changes:

• freq(Ps, Tcur) will be equal to the initial freq(Ps, T0), whenever the cur-
rent target set is initialised to the original target set (i.e., Tcur = T0).

2Should a hash-table be employed for set member lookups.
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• As soon as a sensor has been selected for the generated set, the targets
this sensor covered are removed from the current set of targets Tcur. The
coverage value of other sensors covering any of these targets is decremented
as required.

The optimisations mentioned above make the coverage checks much more
efficient and have been used in the simulation software described in Section 5.1.

4.2 Dynamic–CCF

While constructing a cover set, a greedy coverage algorithm removes sensors
from the set of available nodes Savail. If N ′i represents the sensors that could
cover target ti during the execution of the algorithm, then N ′i should be updated
each time Savail changes.

Instead of defining a Critical Target as a target ti that is covered by a
small amount of sensors in the terrain, one can define the Critical Target as a
target within the execution context of the algorithm that has a corresponding
“neighbour-sensor” set N ′i with the lowest cardinality. This provides us with
a more accurate view of the targets that can be effectively covered by a small
amount of sensors (i.e., they might have not started as Critical Targets but
they became such during the cover set generation process). The Dynamic–CCF
algorithm uses N ′i to recalculate the Critical Targets at the beginning of each
cover set. This approach provides the CCF function with a more accurate mea-
surement of critical nodes, but comes at the cost of a continuous recalculation
of “neighbour-sensor” sets.

During the setup phase, Dynamic–CCF uses input I to calculate T0, S0, N
and max sets. The algorithm structure is very similar to that of Static–CCF
(see Algorithm 2). Function recompute neighbour sets is responsible for recal-
culating the “neighbour-sensor” sets, while function recompute min cardinality
is responsible for calculating the minimum cardinality of the new “neighbour-
sensor” sets. These functions aid Dynamic–CCF in the discovery of new Critical
Targets.

The new CCF cost function used is:

CCF (Tcur, Ps, Ls, Hs) = α · coverage(Ps, Tcur)
|Tcur|

+β ·Hs +γ · Ls
w

,

CCF (Tcur, Ps, Ls, Hs)→ (0, 1],
where Hs is an attribute of sensor s that signifies whether it is safe to select this
sensor or not. Hs enables the algorithm to skip over sensors that double-cover
Critical Targets. Each time a new cover set is to be constructed, all sensors
are considered harmless and, thus, ∀s ∈ Scur, Hs = 1. If a selected node covers
a set of Critical Targets K, then Dynamic–CCF marks all nodes covering the
same Critical Targets as harmful (∀ ti ∈ K,∀ s ∈ N ′i : Hs = 0). In this way,
harmless nodes get a bonus of β ·Hs in the CCF cost function and are, thus,
preferred for inclusion in the cover set, while harmful nodes (covering Critical
Targets) are penalised and considered with a lower priority.

Dynamic–CCF incurs a higher order of complexity, due to the “neighbour-
sensor” set recalculations and critical node management tasks. Its total running
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time is O(wn2k+wn2 +wnk) for n sensors, k targets and w maximum allowed
participations of any sensor in the output cover sets.

5 Algorithm Evaluation

In order to evaluate the performance of the CCF algorithm, we have conducted
a set of simulations. In this section we discuss our simulation findings and we
show how the proposed algorithm compares to other similar approaches found
in the literature.

5.1 Simulation Environment

Our simulation environment consists of two families of Perl scripts. The first
family of scripts is responsible for generating terrains of targets and sensors,
while the second is responsible for executing the desired algorithms on the gen-
erated topologies.

5.1.1 Topology Generation

Our terrain generation software is capable of producing 2-dimensional, 3-dimensional
as well as k-dimensional topologies3. The small degree of freedom offered by
2d terrains makes them good candidates for testing coverage algorithms in de-
ployment scenarios where the terrain need not be modelled with high accuracy.
Obviously, the 3d terrain generation software can simulate more realistic deploy-
ment scenarios. The user provides the 2d and 3d terrain generation scripts with
the number of sensors, targets and the size of the area they will be scattered
in, thus allowing the script to control the density of node deployment. Each
simulated sensor has a communication radius, Rc, of 50m and a sensing radius,
Rs, of 10m. The node placement strategy is described in the following steps:

1. Initially, sensors and targets are scattered randomly in the user–selected
field, following a uniform spatial distribution. A base station is also intro-
duced at a fixed position in the field [0, y/2] in 2d terrains and [0, y/2, z/2]
in 3d terrains.

2. Targets not covered by any sensor are ignored.

3. Sensors not covering any target are ignored.

4. Each target defines an area with the target location being the centre of the
area. A sensor belongs to an area if the area’s centre (i.e., target location)
lies within its sensing range Rs. It is possible for a sensor to belong to more
than one areas. In order for any two sensors (possibly covering different
areas) to be able to exchange data, the Euclidean distance between the

3We will be focusing on 2d and 3d terrains, since k-dimensional topologies are mainly
useful for testing cover set generation algorithms in application domains other than WSN,
where topological restrictions do not apply.
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centres of the observed areas must be smaller than (Rc − 2 ·Rs). Solitary
areas that cannot communicate directly with any of the other areas in the
terrain (or the base station) are discarded.

5. A graph is constructed with vertices representing the remaining areas and
edges connecting the areas that communicate directly. The base station is
also introduced as a vertex in the graph along with edges connecting it with
the appropriate areas. The transitive closure of the graph is computed and
any area that has no path leading to the base station is discarded.

6. Finally, the collection of sensors and targets belonging to the remaining
areas form the generated topology.

Steps 2 and 3 ensure that the output of the topology generation scripts is
compatible with the coverage algorithm input described in Section 3. That is,
all targets must be covered by at least one sensor and any sensor should cover
at least one target (i.e., be part of a “neighbour-sensor” set). The connectivity
check in step 5 ensures that there exists a path between any sensor in the
generated terrain and the base station. By moving the connectivity check to
the terrain generation stage, we allow all coverage algorithms to benefit from
this; the cover sets produced will have guaranteed connectivity with the base
station. It is also possible for the coordinates of a real deployment scenario
to be used in step 1. In this case, the above process plays the role of a filter,
generating the subset of the sensor network that is capable of communicating
with the base station.

5.1.2 Implementation Notes on the Simulated Coverage Algorithms

In our simulations, we compare Static–CCF and Dynamic–CCF to the following
algorithms: the disjoint set algorithm by Slijepcevic et al. [14], the Greedy-MSC
heuristic algorithm by Cardei et al. [6], the B{GOP} algorithm [19] and a ran-
domised variation of B{GOP}, called B{GOP}–random. For our simulation
purposes, we have implemented all of these algorithms in Perl, with the excep-
tion of the disjoint–set algorithm proposed by Slijepcevic et al., which we have
kept in its original form in the Java programming language. Since this algo-
rithm is implemented in a different programming language we will be assessing
its relative rather than its absolute execution time in our simulations.

In the algorithm proposed by Cardei et al. in [6], once a critical target has
been found, a sensor that covers the target must be selected. If more than
one sensors exist, then the sensor most suitable for selection will be the one
with the highest contribution. In our implementation of the Cardei non–disjoint
algorithm, the following contribution formula f(s) was used:

f(s) = freq(Ps, Tcur) + Ls,

where freq(Ps, Tcur) is the number of uncovered targets that sensor s covers
and Ls is the sensor’s remaining lifetime.

21



The version of B{GOP} used in our experiments, has been modified slightly
to use the badness formula found in the Static–CCF algorithm (see Section
4.1.1). Its randomised variation, B{GOP}–random, introduces a probability–
driven selection process for candidates of Best and Good–OK–Poor classes.
Specifically, in the Best class, the probability of a particular node being selected
is inversely proportional to its badness value, while in the Good–OK–Poor class,
the same probability is proportional to the result of the CCF cost function for
this node. By experimenting with randomisation, we expect to gain some insight
into the effectiveness of non-deterministic node selection strategies. Randomised
versions of Static–CCF and Dynamic–CCF were also developed, but since their
performance was similar to that of B{GOP}–random, they have been omitted
from our evaluation for reasons of brevity.

5.2 Simulation

In this section, we evaluate the performance of our algorithms in the production
of node disjoint and non-disjoint cover sets, by way of simulation. We use two
simulation scenarios, each one characterised by the number of sensors deployed,
the number of targets monitored and the dimensions of the terrain (2d or 3d
terrain). The first scenario involves the deployment of 350 sensor nodes and 40
targets on a 2-dimensional terrain, while the second senario consists of 500 sensor
nodes and 20 targets deployed on a 3-dimensional terrain. These parameters
are selected in order to satisfy the topology generation requirements described
in Section 5.1.1. More specifically, these parameters ensure that each sensor
covers at least one target and each target is covered by at least one deployed
sensor.

The above scenarios are used for the simulation of both disjoint and non-
disjoint cover set generation algorithms. Although our algorithms are capable
of solving both problems in a unified manner (via parameter w), we use this
distinction in order to compare our results against the results of algorithms
that address only one of the two problems (e.g. the node disjoint algorithm of
Slijepcevic et al. [14]). Our primary goal is to measure the impact of deploy-
ment density on the algorithm execution time, in simplified (2d) and realistic
(3d) topologies for both disjoint and non-disjoint algorithms. Our secondary
goal, which concerns only non-disjoint algorithms, is to investigate the relation-
ship between the node participations and the network lifetime offered by the
generated cover sets.

For each simulation scenario we generate 20 random topologies, as described
in Section 5.1.1. We execute each algorithm 20 times on each topology, in or-
der to calculate the network lifetime and the average time per generated cover
set. Additionally, for the non-disjoint algorithms, we also examine the relation
between network lifetime and maximum node participations. We measure net-
work lifetime in battery units, where one battery unit equals the time h that a
sensor can operate before running out of battery resources. The network life-

time is computed by
∑20

i=1 |Ci|
20·w , where |Ci| denotes the number of generated sets
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produced by the i-th execution of the algorithm.
As described in Section 4.1.2, the CCF formula uses three “tunable” param-

eters, namely α, β and γ. For the simulations of the Static–CCF algorithm,
we have used the values α = 0.35, β = 0.02 and γ = 0.63. Our simula-
tions of the Dynamic–CCF algorithm use equal values for all three parameters,
i.e. α = β = γ = 1

3 .
All experiments were carried out on a Pentium 4 3.4Ghz host with 1GB of

RAM, running the Debian GNU/Linux operating system.

5.2.1 Results using the disjoint sets approach

Figure 6 illustrates the performance of the node disjoint algorithms (Static-CCF,
Dynamic-CCF, Slijepcevic et al. [14], B{GOP} [19] and B{GOP}-random)
in the 2d scenario. As shown in Figure 6a all of the examined algorithms
present similar network lifetime, equal or very close to the theoretical maximum.
B{GOP}–random is an exception to this, particularly when dealing with dense
sensor deployments. As far as the algorithm execution time is concerned, the
Slijepcevic et al. algorithm exhibits an exponential increase in execution time
(see Figure 6b) as the terrain becomes smaller and targets receive more sensors
in their “neighbour-sensor” sets. Dynamic–CCF also comes with a performance
penalty, when compared to Static–CCF, due to the algorithm’s higher order of
complexity. Figure 7 presents similar results, showing the performance of the
algorithms in the 3d scenario.
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Figure 6: Performance of node disjoint algorithms in a 2d environment with a
variable terrain size

5.2.2 Results using the non-disjoint sets approach

For the algorithms generating non-disjoint sets (Static-CCF, Dynamic-CCF,
Cardei et al. Greedy-MSC heuristic [6]), we conduct three experiments. In
the first experiment, we allow sensors to participate in ten produced sets (at
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Figure 7: Performance of node disjoint algorithms in a 3d environment with a
variable terrain size

maximum) and we record the achieved network lifetime and required execution
time per generated set. Table 3 shows the results of using the non-disjoint
algorithms in the 3d scenario. The results of two disjoint-set algorithms (Static–
CCF and B{GOP}–random) are also displayed in the table, in order to assist
us in our comparison.

Table 3: Network Lifetime (NL) and Average execution Time per Set (ATS) for
disjoint and non-disjoint algorithms in a 3d environment with variable Terrain
Size (TS)

Static–CCF B{GOP}–random Static–CCF Dynamic–CCF Cardei-Greedy-MSC
disjoint disjoint non disjoint non disjoint non disjoint

TS NL ATS NL ATS NL ATS NL ATS NL ATS

(m3) (sec) (sec) (sec) (sec) (sec)

337.5 213.40 0.005 190.20 0.006 213.40 0.078 213.40 0.099 202.20 0.027
409.6 168.00 0.005 149.40 0.005 168.00 0.077 168.00 0.095 164.00 0.025
491.3 164.00 0.005 145.20 0.005 164.00 0.078 164.00 0.093 159.00 0.025
583.2 151.40 0.005 137.00 0.005 150.80 0.078 151.40 0.093 146.80 0.024
685.9 147.00 0.005 129.80 0.005 147.00 0.073 147.00 0.084 138.00 0.023
800.0 120.00 0.005 115.20 0.005 120.00 0.077 120.00 0.088 115.00 0.019
926.1 137.00 0.005 125.00 0.005 137.00 0.074 137.00 0.084 133.00 0.022
1064.8 126.00 0.005 110.40 0.005 128.00 0.076 129.00 0.084 124.00 0.022
1216.7 90.00 0.005 86.40 0.006 90.00 0.086 90.00 0.090 89.00 0.018

The disjoint algorithms provide results very close to the optimum solution
(theoretical maximum), in most of the examined scenarios. Note that the non-
disjoint algorithms also provide results very close to the optimum solution, as
in the disjoint approach. However, they exhibit ten to fifteen times longer
execution times when compared to the disjoint approaches. This is due to
the fact that the maximum allowed participations parameter w increases the
complexity of the algorithm in the non-disjoint case. Both algorithms however,
provide nearly optimum results.

In the second experiment (see Figure 8) we wish to test the impact of node
participations on the achieved network lifetime. To this end, we use two topolo-
gies, one based on the 2d scenario and one based on the 3d scenario. As shown
in Figures 8a and 8b, the CCF algorithms produce a large number of cover sets
even when a small number of maximum node participations has been used. On

24



Table 4: Node Participations and Average execution Time per Set (ATS) when
producing the theoretical maximum number of cover sets (3d space, variable
terrain size)

Static–CCF Dynamic–CCF Cardei-Greedy-MSC

Terrain Max. node ATS Max. node ATS Max. node ATS

Size (m3) participations (sec) participations (sec) participations (sec)

337.5 1 1.07 1 1.71 56 54.17
409.6 1 0.84 1 1.18 28 18.40
491.3 1 0.82 1 1.15 26 16.80
583.2 1 0.76 1 1.06 26 14.97
685.9 1 0.74 1 0.88 32 16.64
800.0 1 0.60 1 0.72 26 9.23
926.1 1 0.69 1 0.82 24 11.53
1064.8 3 2.69 1 0.77 40 12.32
1216.7 1 0.45 1 0.54 7 1.07

the contrary, the Greedy-MSC requires the participation of a node in more than
fifty sets in order to reach a satisfactory result, which comes at a cost in total
execution time.
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Figure 8: Network lifetime in relation to maximum node participations in 2d
(left) and 3d (right) environments

Finally, in our third experiment we wish to find the minimum number of
node participations required, in order to produce cover sets that offer a certain
network lifetime. Table 4 presents the performance of the examined algorithms
in a 3d scenario with variable node deployment density, where the algorithms
must produce the theoretical maximum number of possible cover sets. Both
flavours of the CCF algorithm achieve this goal in a short amount of time, using
only one node participation (in most topologies). On the other hand, the Cardei
et al. Greedy-MSC heuristic requires a node to be a member of more than 50 sets
in order to satisfy the above requirement in dense sensor deployment scenarios.

6 Conclusions

In this paper, we have presented a centralised greedy algorithm for the efficient
production of both node disjoint and non-disjoint cover sets.
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Table 5: A comparison between the proposed algorithm and the algorithms of
[14, 6]

Static–CCF Slijepcevic et al. Cardei et al.

Type of Disjoint and Disjoint Disjoint and
sets produced non-disjoint non-disjoint

Prioritise nodes that Starts cover set with a Starts cover set with a
Critical node cover targets with critical node. Other nodes critical node. It does not

handling low criticality covering the same critical implement any critical node
targets are ignored. avoidance strategy.

a) # of uncovered targets
vs. # of already covered a) # of uncovered targets

Candidate node b) # of available targets # of already covered the candidate covers
selection criteria c) association with poorly targets the candidate covers b) remaining battery life

monitored targets
d) remaining battery life

Complexity O(wn2k) O(n2) O(dk2n)

Dense node Yes, due to increased
deployment incurs No Yes number of participations
significant penalty required for optimal
in execution time solution

To evaluate the efficiency of the proposed algorithm, we have measured its
performance against that of other approaches found in the literature. Our test
cases included various deployment scenarios, in 2-dimensional and 3-dimensional
terrains. We have found that the Static–CCF version of the proposed algorithm
outperforms other similar algorithms in terms of execution time, while it ex-
hibits comparable and near optimal results in terms of generated coverage sets.
Moreover, we have found that the Dynamic–CCF version of the algorithm, pro-
duces marginally better results but exhibits longer execution times.

When producing non-disjoint cover sets, both Static–CCF and Dynamic–
CCF provide cover sets offering longer network lifetime than those produced
by [6]. Also, they require a smaller number of node participations in order to
achieve these results.

Table 5 summarises the improved characteristics of the Static–CCF algo-
rithm, in comparison to other existing approaches. First, our algorithm is flex-
ible enough to effectively avoid the “double-covering” of critical fields, i.e. a
situation where a critical field is covered by more than one nodes in a given
cover set. This is achieved by ranking sensors according to the CCF function,
that is based on several factors such as the coverage status of candidates, their
association with poorly monitored targets and their available battery resources.
Moreover, the proposed algorithm shows a relatively low complexity, allowing
for the efficient production of cover sets even in dense deployment scenarios.

Finally, by comparing the results gathered from the node disjoint and non-
disjoint algorithms we observe that it is possible to generate the optimal number
of cover sets with a node disjoint approach to CCF, rather than investing on a
more time-consuming non-disjoint algorithm.
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Algorithm 1 The Static-CCF Algorithm

Require: S0 6= ∅, T0 6= ∅, P 6= ∅, max sets > 0, B 6= ∅, Bmax > 0, w > 0, α, β, γ ∈ (0, 1)
C = ∅
Savail = S0

for all s ∈ Savail do
Ls := w

end for
while Savail 6= ∅ do {Sensor availability check}
Scur = Savail

Tcur = T0

Ccur = ∅
while Tcur 6= ∅ do {Uncovered target check}
selected := none
max CCF := 0
for all s ∈ Scur do {Sensor applicability check}

if freq (Ps, Tcur) 6= 0 then
uncovered := freq (Ps, Tcur)
covered := freq (Ps, T0)− uncovered

r := 1−
|Tcur|
|T0|

coverage :=
uncovered

(covered+ 1)r

CCF := α ·
coverage

|Tcur|
+ β ·

(
1−

Bs

Bmax

)
+ γ ·

Ls

w

if CCF > max CCF then
max CCF := CCF
selected := s

end if
end if

end for {Sensor applicability check}
if selected = none then

return C
end if
Tcur = Tcur − Pselected

Scur = Scur − {selected}
Lselected := Lselected − 1
if Lselected = 0 then
Savail = Savail − {selected}

end if
Ccur = Ccur ∪ {selected}

end while {Uncovered target check}
C = C ∪ {Ccur}
if |C| = max sets then

return C
end if

end while {Sensor availability check}

return C
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Algorithm 2 The Dynamic-CCF Algorithm

Require: S0 6= ∅, T0 6= ∅, P 6= ∅, N 6= ∅, max sets > 0, w > 0, α, β, γ ∈ (0, 1)
C = ∅
Savail = S0

for all s ∈ Savail do
Ls := w

end for
while Savail 6= ∅ do {Sensor availability check}
Scur = Savail

Tcur = T0

Ccur = ∅
Critical Targets = ∅
N ′ = recompute neighbour sets(T0, N, Savail)
min cardinality = recompute min cardinality(N ′)
for all ti ∈ Tcur do

if |N ′
i | = min cardinality then

Critical Targets = Critical Targets ∪ {ti}
end if

end for
for all s ∈ Scur do
Hs := 1

end for
while Tcur 6= ∅ do {Uncovered target check}
selected := none
max CCF := 0
for all s ∈ Scur do {Sensor applicability check}

if freq (Ps, Tcur) 6= 0 then
uncovered := freq (Ps, Tcur)
covered := freq (Ps, T0)− uncovered

r := 1−
|Savail|
|S0|

coverage :=
uncovered

(covered+ 1)r

CCF := α ·
coverage

|Tcur|
+ β ·Hs + γ ·

Ls

w

if CCF > max CCF then
max CCF := CCF
selected := s

end if
end if

end for {Sensor applicability check}
if selected = none then

return C
end if
for all ti ∈ Pselected do

if ti ∈ Critical Targets then
for all s ∈ N ′

i do
Hs := 0

end for
end if

end for
Tcur = Tcur − Pselected

Scur = Scur − {selected}
Lselected := Lselected − 1
if Lselected = 0 then
Savail = Savail − {selected}

end if
Ccur = Ccur ∪ {selected}

end while {Uncovered target check}
C = C ∪ {Ccur}
if |C| = max sets then

return C
end if

end while {Sensor availability check}

return C
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Function 3 recompute neighbour sets

Require: T0, N, Savail

for all ti ∈ T0 do
for all sj ∈ Ni do

if sj ∈ Savail then
N ′

i = N ′
i ∪ {sj}

end if
end for

end for

return N ′

Function 4 recompute min cardinality

Require: N ′

min cardinality =∞
for all N ′

i ∈ N
′ do

if |N ′
i | < min cardinality then

min cardinality = |N ′
i |

end if
end for

return min cardinality
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