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Abstract

Observing mobile or static targets in the ground using flying drones is
a common task for civilian and military applications. We introduce the
minimum cost drone location problem and its solutions for this task in
a two-dimensional terrain. The number of drones and the total energy
consumption are the two cost metrics considered. We assume that each
drone has a minimum and a maximum observation altitude. Moreover,
the drone’s energy consumption is related to this altitude. Indeed, the
higher the altitude, the larger the observed area but the higher the en-
ergy consumption. The aim is to find drone locations that minimize the
cost while ensuring the surveillance of all the targets. The problem is
mathematically solved by defining an integer linear and a mixed integer
non-linear optimization models. We also provide some centralized and
localized heuristics to approximate the solution for static and mobile tar-
gets. A computational study and extensive simulations are carried out to
assess the behavior of the proposed solutions.

1 Introduction

During the recent years, we have witnessed an increased interest in using flying
devices for monitoring applications. Emerging pervasive application systems,
such as observation and tracking of unknown moving or static objects, will face
a number of challenges, including the need to operate in extreme and unknown
environments. It is important to develop reliable systems by providing the most
appropriate and up to date information, at the lowest cost. The technology to
observe this kind of systems, such as drones has become increasingly prevalent
and has many practical applications, including emergency or rescue operations,
military operations, and environmental monitoring.

We assume drones equipped with one or more electrical motors (quadcopters)
and a fixed-angle camera targeting on the ground. The drones are able to
identify static or mobile ground targets, which are considered as points that
have to be monitored, such as machines, animals, humans etc.. We assume a
binary sensing model, with isotropic sensing, and that the targets are moving
on a flat and smooth area of interest. In case of mobile targets, no a-priori
information about their mobility is known, except their maximum speed. Our
objective is the optimal deployment of drones ensuring, at the same time, that
each target is covered by at least one drone. Another dimension in our problem
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is that each drone can change its coverage radius, depending on its altitude
that allows it to cover more or less targets. It is assumed that the energy
consumed by each drone is related to its altitude. We take into consideration
an empirical energy consumption model based on our own measurements with
electrical motors and drone manufacturers data. The focus of this work is
the minimization of the cost, that is the number of drones or the total energy
consumption. The number of drones depends on the number of targets, their
dispersion, and their movement. In this paper, we minimize the total cost only in
order to simplify the computational model. However, a split rule can be easily
added in heuristics to decrease altitudes – and thus the energy consumption
– when there is such a need. Moreover, in our localized solution, drones are
always keen to retain low altitudes even if the objective is the minimization of
the number of nodes.

The optimal placement of a set of monitoring devices is a very challenging
problem, which, in most of the cases, has been proven to be NP-Hard [42]. It is
then critical to design fast, efficient and autonomous algorithms to support per-
vasive, “any time, any place” services in these highly mobile environments, prone
to time and space evolution. Furthermore, since the system is autonomous, en-
ergy becomes a major concern. Hence, the energy reservation represents a fairly
complex point of interest in coverage problems and constitutes a main contri-
bution of this paper. To the best of our knowledge, this is one of the first
papers, that specifically deals with the cost minimization of static or mobile
target tracking in the context of drones.

A simplified version of the considered problem has been addressed by the
same authors in [47], where it is assumed that an infinite number of drones
is available to cover a set of mobile ground targets. In [47], the objective is
to minimize the total energy consumption. In the current paper, we handle
a more general aspect of the problem under consideration by minimizing both
the number of drones and the energy consumption assuming, at the same time,
static or mobile targets. The introduction of non-linear restrictions as well as of
a new more realistic energy consumption model makes the resulting optimiza-
tion models (mixed integer non-linear programs) more complex than the ones
presented in [47]. A similar problem is presented in [13], where mobile targets
are covered by a set of drones with limited energy resources. Each drone can
be replaced by another drone if its energy has been depleted. The paper re-
sults show that solving to optimality the previous problem is a hard task even
for small instances. The authors resort to heuristics based on the resolution
of restricted mixed integer programs. The heuristics show very promising per-
formance exhibiting a reasonable trade-off between quality of the solution and
computational effort. The contributions and originality of the this paper are:

• We mathematically formulate the optimal drone location problem. We
provide a mathematical model to compute the optimal solution of the
target coverage including 3-dimensional placement of the drones to cover
all the targets.

• We provide an enhanced model that takes into account the energy of each
drone.

• Based on the mathematical model, we design an optimal centralized solu-
tion to solve the static or mobile drone location problem.
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• We propose two low-complexity centralized algorithms which provide scal-
able and efficient solutions to the drone location problem. The algorithms
can solve instances of the considered problem with more that 50 targets
and infinite possible positions for the drones. On the other hand, the op-
timal centralized algorithm can only provide solutions for up to 10 targets
and 7803 possible positions for the drones.

• We propose a localized algorithm for the mobile drone location problem,
where each drone autonomously cooperates with neighboring drones in
order to minimize the cost. Some interesting split and merge mechanisms
are incorporated in the localized algorithm whereas its performance is not
far from the centralized algorithm.

The remainder of the paper is organized as follows. In Section 2, we discuss
the “State of the art” related to the optimal placement and drone coordination
problems. Section 3 introduces the optimization models, whereas Sections 4 and
5 describe the heuristic solutions. Section 6 is devoted to the presentation of
the computational and simulation results collected to assess the behavior of the
proposed models in terms of correctness and efficiency. The paper ends with
some conclusions given in Section 7.

2 State of the art

2.1 Optimal placement

The optimal placement of static or mobile devices, for monitoring a set of tar-
gets, has already been studied in the literature from different aspects. The works
closest to ours deal with the design of optimization strategies that determinis-
tically place nodes in order to meet specific goals such as coverage and network
longevity [22, 27, 25, 11, 39]. In contrast to the drone location problem, where
the machines can change their altitude and, thus, reduce or increase the coverage
area, the targets are monitored by wireless sensor nodes with fixed monitoring
range. However, the optimal node placement problem can be transformed to
an optimal drone location problem, considering that the nodes can adjust their
monitoring range to cover more or less targets. Other similar node placement
problems are the relay node placement and placement of data collectors. A
thorough review of these works is done in [42].

Other optimization problems deal with the positioning of cameras for surveil-
lance systems [16, 4, 15]. The purpose of the placement is to provide full coverage
of a whole area as well as the highest resolution images of objects and motions
in the scene that are critical for the performance of some specific task. This
kind of problems differ to the drone location problem since the position of the
camera is horizontal.

2.2 Similarities with sensor networks

The drone location problem with adjustable heights is similar to the node de-
ployment problem of wireless sensor networks with adjustable sensing ranges.
In this kind of networks a number of nodes is deployed to cover some targets
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or area while the nodes can adjust their sensing radii to conserve energy. Im-
portant information about this similar problem can be found in [3, 9, 12, 44].
Most of these works deal with the problem of computing the maximum number
of cover sets such that only one set is active at any time and each set covers
all the targets. Adjustment of radii is used as an option of reducing the energy
cost and, thus, increasing the number of sets. This type of scheduling problems
are proven to be NP-Complete [8].

2.3 Vehicle coordination and coverage

The use of flying machines for monitoring purposes is an important task which
has attracted a lot of research effort, in the recent years. We use the term
“coverage” to refer to a wide range of problems related to target tracking, area
discovery, area patrol, quality of detection, and navigation. On the other hand,
drone coordination is usually limited to (a) how a fleet of machines can cooper-
atively monitor a number of ground targets as well as to (b) static or dynamic
machine routing problems, related to the computation of an optimal trajectory.

A relevant big part of the literature is dedicated to coverage requirements and
mainly to how well objects are tracked by sensors (e.g cameras) attached to the
drones. In [36] and [17] a target detection problem is considered where a group
of drones detects the position of targets using sensors located on the machines.
Real vision-based drone navigation and guidance systems are presented in [40]
and [5]. This kind of systems are capable of localizing targets and estimate their
position. In [45], an approach that guarantees the global convergence of a single
drone to a desired orbit around a target is proposed. Constant background wind
and target motion are, also, taken into account. In [23] and [38] algorithms
to cooperatively track a moving target by several drones are proposed. The
objective is to keep the target in the sight of the cameras from different angles
and predict its motion. A patrol problem where drones must repeatedly visit a
set of static targets is presented in [7]. A similar problem is presented in [10],
where an automated surveillance system for tracking multiple mobile ground
targets is proposed. The objective of the approach is to search and cover targets
while taking into account the energy restrictions of the machines.

Communication between drones can improve the location estimation of mo-
bile targets and the robustness of the system [33]. In [34], a team of drones has
been used to simulate a cooperative moving target engagement scenario, with
the team acting as a sensor and communication network to cooperatively track
and attack moving ground targets. Cooperative search and coverage is, also,
the objective of [30], [29] and [32]. Algorithms are proposed to divide the area
in segments and machines are used to cooperatively monitor these segments.

Many works related to drones deal with the optimization of one or more
objectives. The objectives may vary depending on the characteristics of the
application (i.e., knowledge of the position of the targets, number of machines,
full or partial coverage of the area). However, most of the scientific contributions
deal with the minimization of a single criterion such as (a) the average time
between the appearance of a target and the time in which drones carry out the
coverage task [18], (b) the total length of the trajectory [6], and (c) the service
cost [37]. The computation of an optimal trajectory planning is a common
problem in the literature. Such problems are mathematically represented as
dynamic machine routing models where the position of the targets is advertised
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to the machines. Solutions related to task allocation and trajectory planning are
proposed in [1], [35] and [21]. Finally, a target tracking scenario with multiple
objectives is presented in [14] and [43]. It is assumed that specific restricted
areas must be avoided, each drone must stay within a specific distance from a
target, and the total threat exposure level must be minimized.

Despite the recent extensive research effort on target tracking and drone
coordination, cost efficiency is not well studied. Although some scientific works
deal with the cost minimization [31, 19], they focus on the computation of energy
efficient trajectories, where only a single or a few targets are deployed.

3 The static and mobile drone location prob-
lems

In this section, we mathematically formulate the Static and Mobile (dynamic)
Drone Location Problems, referred to as SDLP and MDLP respectively. In
order to describe the proposed mathematical model to represent the optimal
static or mobile drone location problem, it is useful to introduce the following
notations and definitions.

The flying zone is represented as a parallelepiped of height hmax. The target
detection above hmax is not possible and the machines are not allowed to fly
beyond this threshold. In addition, the drone cannot fly below a given height
hmin. The projection of the whole flying region is represented by a rectangular
with length xmax and width ymax.

We discretize the flying zone, thus we assume that we have points (x, y, h)
where the drones could be located. It is worth observing that the targets assume
arbitrary positions in the terrain of dimension xmax × ymax.

Let U denote the set of available machines and T be the set of targets to
be monitored. It is assumed that each target ti ∈ T is characterized by its
coordinates (Xti , Yti). Given a drone u located at point (xu, yu, hu) and the
target ti, we define the distance between u and ti when h = 0 with Dxuyu

ti =√
(Xti − xu)2 + (Yti − yu)2.
Each drone u has a visibility θ that is represented by a disk in the plane

(x, y) with radius rhu which depends on hu. The higher the component hu, the
longer the radius. The visibility depends on the angle of the camera lens. Two
are the main decisions to be taken. On one hand, we have to decide the position
(i.e., the coordinates (xu, yu, hu)) where each drone u ∈ U should be located
to monitor the targets. On the other hand, given the placement (xu, yu, hu) of
the drones u ∈ U , we have to decide which targets ti ∈ T are monitored by a
drone u ∈ U . The first decision is mathematically represented by the decision
variables reported below.

δuxyh =


1 if the drone u is located at the point of

coordinates (x, y, h)

0 otherwise

(1)

The following decision variables allow us to define which targets are covered
by each allocated drone:
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γuti =

{
1 if the target ti is observed by the drone u

0 otherwise
(2)

The objective is to monitor all the targets with at least one drone minimiz-
ing either the number of used machines or the total energy consumption. In
addition, each drone consumes E = (β+αk)t+Pmax(k/s) energy, where β is the
minimum power needed to hover just over the ground (when altitude is almost
zero) and α is a motor speed multiplier. Both β and α depend on the drone
weight and the motor/propeller characteristics. Pmax is the maximum power of
the motor, s is the speed, and t is the operating time. αk denotes the relation
between power and height. The term Pmax(k/s) refers to the power consump-
tion needed to lift to height k with speed s. According to our own measurements
with mobile robots [46], information by drone manufacturers and a multicopter
power simulator [26], we presume that this power consumption model is not far
from the reality. We must note here that the reader should not confuse quad-
copters energy consumption with that of a fixed-wing Unmanned Aerial Vehicle
whose energy consumption does not really depend on height.

The mathematical model assumes small but instantaneous drone and target
movements. This assumption has been made to ease the computational process
of the already overburdened optimization model. This is not exactly the case
for centralized or localized heuristics where infinite number of drone and target
positions is assumed. It implies that the drones movement is very small related
to the previous position. Both algorithms take into consideration the maximum
speed of the targets as well. This speed affects how high the drones fly as well
as the time period between two algorithm computations.

The mathematical model is stated as follows:

min f(δ) (3)

s.t. ∑
(x,y,h)

δuxyh ≤ 1 ∀u ∈ U (4)

γuti ≤
∑

(x,y,h)

δuxyh

(
rhu

Duxy
ti

)
∀u ∈ U, ti ∈ T (5)

∑
u∈U

γuti ≥ 1 ∀ti ∈ T (6)

δuxyh ∈ {0, 1}, ∀(x, y, h), 1 ≤ x ≤ xmax, (7)

1 ≤ y ≤ ymax, hmin ≤ h ≤ hmax, u ∈ U (8)

γuti ∈ {0, 1}, ∀ti ∈ T, u ∈ U (9)

Constraints (4) ensure that the drone u is located in at most one position.
Conditions (5) are used to set the value of variable γuti . In particular, if the
radius is less than the distance, then γuti takes a value equal to 0, otherwise,
the variable can assume a value equal to either 0 or 1. Constraints (6) en-
sure that each target is observed by at least one drone. Constraints (7) to
(9) specify the domain of the decision variables. The objective (3) is of the
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form f(δ) =
∑

(x,y,h)

∑
u∈U δ

u
xyh when the number of used machines is mini-

mized. On the other hand, if we want to minimize the total amount of en-
ergy consumption, f(δ) = β

∑
(x,y,h)

∑
u∈U δ

u
xyht + α

∑
(x,y,h)

∑
u∈U hδ

u
xyht +

Pmax

s

∑
(x,y,h)

∑
u∈U hδ

u
xyh.

The model (3) – (9) is a static representation of the problem. It is possible
to formulate the problem when each target must be observed for a given amount
of time. In addition, the targets can move in the field. In particular, a time
window [τ timin, τ

ti
max] is associated with each target ti ∈ T . This means that

the target ti, initially located at the point of coordinates (Xti , Yti), must be
observed in the time range defined by the corresponding time window.

Each target moves across the area, thus it changes its position during the
time. In order to capture the dynamism of the system, starting from (Xti , Yti),
a sequence of coordinates Ci is associated with each target ti. We assume that

|Ci| =
⌈
τ
ti
max−τ

ti
min

∆τ

⌉
, where ∆τ is the time interval in which a new position of

the target ti is reached.
In order to represent the movement, target ti is replaced with |Ci| copies.

A time window is associated with each copy tji , j = 1, . . . |Ci| of target ti. In
particular, [τ timin, τ

ti
min + ∆τ ] is the time window associated with the first copy

of ti, whereas the time window associated with the copy tj+1
i , j = 1, . . . , |Ci|−1,

is defined as [τ
tji
max, τ

tji
max + ∆τ ]. Of course, if τ

t
|Ci|
i
max > τ timax, then τ

tji
max = τ timax.

The copies of each target are stored in the set Ṫ .
In this model, we have to consider others decisions. In particular, we have

to state when the drones u ∈ U both start and terminate the observation,
respectively.

Let τustart and τuend be the initial and final time of observation of drone u,
respectively.

The mathematical formulation of the optimal mobile drone location problem
is reported in what follows:
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min f(δ) (10)

s.t. ∑
(x,y,h)

δuxyh ≤ 1 ∀u ∈ U (11)

γu
tji
≤
∑

(x,y,h)

δuxyh

(
rhu

Duxy

tji

)
∀u ∈ U, tji ∈ Ṫ (12)

∑
u∈U

γu
tji
≥ 1 ∀tji ∈ Ṫ (13)

τustart ≤ τ
tji
minγ

u
tji

+M(1− γu
tji

) ∀u ∈ U, tji ∈ Ṫ (14)

τustart ≤
∑
tji∈Ṫ

τ
tji
minγ

u
tji
∀u ∈ U, (15)

τuend ≥ τ
tji
maxγ

u
tji
∀u ∈ U, tji ∈ Ṫ (16)

δuxyh ∈ {0, 1}, ∀(x, y, h), 1 ≤ x ≤ xmax, (17)

1 ≤ y ≤ ymax, hmin ≤ h ≤ hmax, u ∈ U ; (18)

γu
tji
∈ {0, 1}, ∀tji ∈ Ṫ , u ∈ U ; (19)

τu, τ
u
start, τ

u
end ∈ R,∀u ∈ U (20)

Constraints (11) ensure that the drone u is located in at most one position.
Conditions (12) are used to set the value of variable γu

tji
. In particular, if the

radius is less than the distance, then γu
tji

takes a value equal to 0, otherwise, the

variable can assume a value equal to either 0 or 1. Constraints (13) ensure that
each target is observed by at least one drone. Conditions (14) – (16) define the
initial and final time of observation of drone u, respectively, whereas constraints
(17) – (20) specify the domain of the decision variables. The value of constant

M in constraints (14) is set equal to maxtji∈Ṫ
τ
tji
min.

The solution to model (10) – (20) can be obtained by minimizing either
the total number of drone by letting f(δ) =

∑
(x,y,h)

∑
u∈U δ

u
xyh, or the total

energy consumption, that is, f(δ) =
∑
u∈U (τuend − τustart)

(
β
∑

(x,y,h) δ
u
xyh

)
+∑

u∈U (τuend − τustart)
(
α
∑

(x,y,h) hδ
u
xyh

)
+ Pmax

s

∑
(x,y,h)

∑
u∈U hδ

u
xyh.

It is worth observing that model (10) – (20) with the objective to minimize
the total energy consumption is a non-linear mixed integer program. Indeed,
the objective function is non-linear.

4 Efficient solutions for SDLP

4.1 Centralized-SDLP

Due to the high complexity of the proposed optimization model, we present
efficient heuristics to minimize the number of deployed machines or the total
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Algorithm 1: Centralized-SDLP
require: T 6= ∅, objective

1 ACTIV E = ∅;
/* Phase 1: */

2 foreach ti ∈ T do
3 place a drone u covering ti;
4 CV RDu = CV RDu ∪ {ti} ACTIV E = ACTIV E ∪ {u};

/* Phase 2: */
5 foreach u ∈ ACTIV E do
6 foreach u′ ∈ ACTIV E do
7 if (dist(u, u′) ≤ Rc) then
8 set X, Y true;
9 return X = false if merge is not energy efficient (according to Formula (21)

when objective = minimize energy);
10 return Y = false if new height exceeds hmax;
11 if (1) and (2) return true then
12 ACTIV E = ACTIV E − {u′};
13 foreach e ∈ CV RDu′ do
14 move targets of CV RDu′ in CV RDu;

15 compute the new position for u;

/* Phase 3: */
16 foreach u ∈ ACTIV E do
17 foreach u′ ∈ ACTIV E do
18 foreach ti ∈ CV RDu do
19 if ti exists in CV RDu′ then
20 CV RDu = CV RDu − {ti};

21 if CV RDu = ∅ then
22 ACTIV E = ACTIV E − {u};

23 return ACTIV E;

energy consumption. Centralized-SDLP (C-SDLP) solves the static drone loca-
tion problem and works as a greedy heuristic. The aim of the algorithm is to
minimize either the energy consumption or the number of drones by avoiding
overlappings (i.e. two or more drones covering same targets). Note that the
minimization of the energy consumption does not imply the minimization of
the number of drones at the same time, i.e. the two objectives are in conflict
one to the other.

C-SDLP works in three phases (see Algorithm 1). During the first phase,
each target is covered by a single drone with the lowest possible altitude.
CV RDu is a set that keeps track of the targets u covers. In the second phase,
the possibility of merging two neighboring drones is examined depending on
the algorithm objectives. If the objective is to minimize the number of drones,
the replacement is mandatory. If the objective is to minimize the total energy
consumption, the replacement will happen only if the energy consumed by a
single drone is lower than or equal to the energy of the two neighboring drones.
In the second case, the following condition holds:

Eu + Eu′ ≥ Euu′ ⇔ β + α(hu + hu′ − huu′)t >
huu′ − hu

s
Pmax, (21)

where hu and hu′ are the altitudes of the two drones before the merging and huu′

is the altitude of the single drone after the merging. After a successful merging,
the drone with the lower altitude is removed, while the remaining drone checks if
it can consecutively merge with another neighboring drones. The process stops
when no other merging can be done. We must mention that the selection of the
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neighboring drones is done based on distance. The closest neighboring node is
examined first.

The final position of the drones is computed using a smallest enclosing circle
method (SEC) [41] and the coordinates of the targets in X,Y axes. The radius of
the SEC and the angle of the camera lens define the final altitude of the drone.
In the last phase, drones covering already covered targets are deleted from the
final group of active drones.

The longest run of Centralized-SDLP algorithm appears when all the nodes
are in the neighborhood (communication range) of each other and each target
is covered by a single drone. In this case, the time needed to compute the
final solution would have been proportional to the time needed to examine all
the pairs of neighboring drones for possible merges (lines 5-15). Every time a
merge happens, the number of pairs to examine reduces by one but the cost of
computing the SEC is added. However, considering that the cost of computing
the SEC is low (O(n) [41]), the worst case appears when no merges happen
since the number of pair checks is maximized. It implies that the total running
time is

∑i=n−1
i=0 (n− i)(n− i− 1), where n = |T |. We can, thus, deduce that the

total running time is O(n3).

4.2 k-means for SDLP

The static drone location problem can be solved by grouping the targets into
clusters and assigning a drone for each cluster. This is a fast method that has
been used for many optimal node placement problems [28]. k-means groups
the targets into k clusters based on the Euclidean distance between the targets
according to the clustering algorithm k-means. In this case, the problem is
transformed to a problem of finding the appropriate value of k. If the objective of
the deployment is to minimize the number of drones, then k must be minimized.
We consecutively examine each value of k starting from 1 until all targets are
covered without exceeding the maximum altitude for any of the deployed drones.

In the case of minimizing the energy consumption, all possible values of k
must be examined (1 ≤ k ≤ |T |). We keep the most energy efficient layout. The
position of the drones is provided by the centroid of the clusters in X,Y axes.
The distance to the most distant member of each cluster corresponds to the
radius of the circle. The radius is used to compute the altitude of each drone.
We must mention here that computing the radius in this way, on one hand, the
energy consumption is slightly increased since the radius is a bit longer (than
that computed by a SEC method), but on the other hand, the complexity is
decreased.

The complexity of the approach is based on the implementation of the k-
means algorithm and the position of the points [2]. If we assume that Inaba’s
et al. algorithm is used [20], then the complexity of k-means is O(n2k), where
n = |T |. In this case, the overall computational cost is upper bounded by

the sum
∑|T |
i=1 n

2i since |T | iterations are needed with O(n2k) complexity each
(k ∈ [1, .., |T |]).
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5 Efficient solutions for MDLP

A centralized (Centralized-MDLP) and a localized heuristic (Localized-MDLP)
are presented to solve the mobile drone location problem.

In this paper, we assume that the targets have already been discovered
and their initial positions have been identified. The initial placement of the
drones may be done either by randomly placing them such that all the targets
are covered, either by placing one drone per target, or by manually placing
drones whose position has been provided by a static placement algorithm (see
Section 4.1). Both centralized and localized solutions are not aware of the initial
placement but their performance may be affected during the first iterations.

At each iteration, each drone covers a number of targets. The new drone
positions are computed according to the movement of these targets in the mean-
time between two iterations. Since the movement of the targets is relatively
small, the new drone position will be slightly different compared to the previous
one. Note, also, that the targets never slip out of the range of a drone. This is
explained in Section 5.2.

The movement of the targets is affected by multiple parameters like their
mobility model (i.e., Random Way Point, Random movement, Attractors), their
direction angle, and their speed. At each instance of time, the position of the
targets is updated according to these parameters. To simplify the mathematical
model and reduce the computation cost, we assume discrete target positions to
describe the movement of the targets. This is not the case for Localized-MDLP,
which actually works with infinite number of target positions. We must, also,
mention here that the future positions of the targets are not known to Localized-
MDLP (neither to Centralized-MDLP). Complete knowledge is only needed for
the computational model in order to obtain the optimal solution. The heuristics
are only aware of the maximum speed and the initial placement of the targets.

5.1 Centralized-MDLP

Centralized-MDLP (C-MDLP) is developed to solve the dynamic drone location
problem. It works in iterations and at each iteration we compute the new
position of the drones. Depending on the movement of the targets (if any) the
drones may slightly move towards a direction and they may split or merge with
other drones. C-MDLP uses C-SDLP, described in Section 4.1, to compute the
position of the drones for the first iteration. The drones’ position of this first
iteration is kept and updated for each of the future steps. We enhance C-SDLP
to check whether two drones can be merged but, also, split to more drones
according to Formula (21).

The overall complexity of the algorithm is O(In3), where n = |T | and I is
the number of iterations. The number of iterations depends on the monitoring
time and how often the drones are examined for possible merges or splits. For
example I coincides with the monitoring time if we assume that a merge/split
check is done every second.

5.2 Localized-MDLP

In Localized-MDLP (L-MDLP) each drone acts autonomously and calculates
its position based on (a) the position of the targets it currently covers, (b) the
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position of the targets its 1-hop neighboring drones cover, and (c) the minimum
and the maximum allowed altitude. The combination of autonomy and low
communication cost makes L-MDLP suitable for real monitoring applications.

We assume that the communication range is a sphere with radius Rc. Two
drones that are located within the communication zone of each other can ex-
change messages. Rc is the same for all the nodes.

The algorithm considers that, at any time all the drones are able to estimate
their position and detect the targets underneath [24]. The procedure is divided
in rounds and in each round (see Algorithm 2) each drone decides its state.
There are two types of state. In the active state, a drone monitors at least
one target and communicates with other drones. In the inactive state, a drone
abandons coverage and remains on the ground when the targets it covers can
be covered by neighboring drones. This process is explained in details in what
follows.

Each round starts by detecting the targets, that each active drone u covers.
u maintains the information about the targets it covers in CV RDu. The initial
number of active drones depends on the initial placement. As explained before,
the initial placement of the robots can be done either randomly (covering all
the targets) or by placing them manually since the initial position of the targets
is known. Once the targets have been detected and their position has been
identified, each active drone computes a stamp taking into account its current
altitude and a random value ρ. ρ is used to avoid having two drones with same
stamp.

The stamp, as well as the coverage info of each active drone, is broadcasted
to 1-hop neighbors and the received stamps as well as the coverage info of the
neighboring drones are used to decide if a drone will discard certain targets
while computing its new location or not. During this decision, merges or splits
may happen.

A merge takes place when two neighboring drones are very close one to each
other and the targets they cover together can now be covered using only one of
the drones. The process is similar to that described in Section 4.1. That is: if
the objective is to minimize the energy cost, two neighboring drones may merge
to one if the energy expense after the merging is lower than having two active
drones. On the other hand, two drones always merge to one if the objective of
the algorithm is to minimize the number of drones.

The feasibility of a merging is examined using two formulas. Formula (22)
makes sure that the remaining drone will not exceed the highest possible alti-
tude:

dist(u, u′) + hu tan θ′ + hu′ tan θ′

2 tan θ′
< hmax. (22)

dist(u, u′) represents the distance between the centers of the two disks and
dist(u, u′)+hu tan θ′+hu′ tan θ′ is the maximum possible diameter of the merged
coverage disk (see Figure (1)).

In order to manage merges, L-SDLP uses a slightly different formula from
that presented in Section 4.1:

Eu + Eu′ ≥ Euu′ ⇔ (β + α(hu + hu′ − huu′))∆t >
huu′ − hu

s
Pmax. (23)
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Algorithm 2: A round of Localized-MDLP
require: T 6= ∅, ACTIV E 6= ∅, objective

1 foreach u ∈ ACTIV E do
2 detect targets of T covered by u;
3 add detected targets in CV RDu;

4 foreach u ∈ ACTIV E do

5 stampu = ρ+
hmax

hu

;

6 send stampu to 1-hop neighbors along with u position and target positions;

7 foreach u ∈ ACTIV E do
8 foreach msg received from neighbor u′ do
9 if (stampu < stampu′) & (dist(u, u′) + hu tan θ′ + hu′ tan θ′ < 2hmax tan θ′)

then
10 if objective = minimize drones then
11 move targets of CV RDu′ in CV RDu;

12 else if objective = minimize energy then

13 if (β + α ∗ (hu − hu′ − huu′ ))∆t > (huu′ − hu) ∗ Pmax
s then

14 move targets of CV RDu′ in CV RDu;

15 foreach e ∈ CV RDu′ do
16 if (e ∈ CV RDu) & (stampu ≥ stampu′) & (dist(u, u′) < (hu tan θ′ + hu′ tan θ′))

then
17 CV RDu = CV RDu − {e};

18 foreach u ∈ ACTIV E do
19 if CV RDu 6= ∅ then
20 CALLSu = ∅;
21 if objective = minimize energy then
22 CV RDtemp

u = CV RDu;

23 CV RDtemp
u = CV RDtemp

u − {most distant target};
24 compute a temporary altitude htemp

u using CV RDtemp
u ;

25 if (β + α ∗ (hu − hu′ − huu′ ))∆t > (huu′ − hu) ∗ Pmax
s then

26 CALLSu = CALLSu ∪ {most distant target};
27 hu = htemp

u ;

28 CV RDu = CV RDtemp
u ;

29 compute new altitude h′
u;

30 while h′ > hmax do
31 find the most distant target in CV RDu;
32 CV RDu = CV RDu − {most distant target};
33 CALLSu = CALLSu ∪ {most distant target};
34 compute new altitude h′

u;

35 call one or more drones to cover the targets in CALLSu;
36 update position;

37 else
38 ACTIV E = ACTIV E − {u};

Here, ∆t denotes the time period during which the merged drone will remain
at an energy efficient height and no split will happen. This period of time
clearly depends on the behavior of the targets. If the covered targets are moving
towards opposite directions, this period of time must be short since a split would
most likely happen in a few iterations.

In case of a merging the targets covered by the drone with the highest stamp
are excluded from its CV RD. Moreover, targets that enter into the range of
a drone with higher altitude are, also, excluded from this set. The drone with
the lowest altitude performs the opposite process; it considers the targets of the
neighboring drones as members of its CV RD set.

On the other hand, a split may happen only if the algorithm objective is
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Figure 1: Drone u and drone u′ and the possibility of merging.

the minimization of the energy consumption or if a drone is going to reach
the maximum possible altitude. Each drone u uses the same condition as in
Centralized-SDLP, described by Formula (21), to check if it is more efficient
to split in two drones or not. More specifically, u checks if the total energy
consumption can be decreased whilst discarding the most distant event and
calling a new drone to cover it. In the affirmative case, the most distant event
is added in set CALLSu and it is removed from CV RDu.

Every time a split occurs, a new drone which is located at the ground moves
to cover the uncovered targets. The coordinates are computed by the drone
which decides to split and they are communicated to the closest command cen-
ter. In this paper, we assume square terrain sizes whose side does not exceed
100 meters. Assuming that the command center is located at the middle of the

terrain, the maximum drone traveling distance is
√

(
√

2 50)2 + h2
max. Modern

drones can move with speeds up to 50km/h (or 13.9m/s). It means that the
longest responsiveness of the drone is less than 5.5 seconds. During this period
of time, the targets cannot slip out of the drone range unless the maximum
target is speed is higher than 1m/s. For larger terrain sizes or higher target
speeds, multiple command centers should be used. Responsiveness is assessed
in Section 6.2.2.

Since the feasibility of merges and splits has been examined and changes
in covering sets have been made, each drone u continues with the computation
of its final position. The targets in CV RDu are used by an enclosing circle
subroutine (or any other method) to determine the final drone position. Once
the new position does not exceed the maximum allowed altitude, the drone is
moving to the new position and a new round of L-MDLP begins.

If the final altitude has exceeded the maximum allowed altitude, the algo-
rithm discards the most distant target until the new altitude is below this value.
The discarded targets are moved to set CALLSu. One or more drones are called
to cover the targets in CALLSu using a broadcast message to the closest com-
mand base. The message contains information about the position of the targets
and the final position of the new drone.

In the meantime between two rounds, one or more targets cannot slip out
of the coverage range. Depending on the speed of the targets and how often

14



the drones detect the targets, the actual altitude of the drones must be slightly
higher than that computed by the SEC algorithm (or any other method) (see
Figure 2). The final drone altitude is computed using the following formula:

hu = hSECu + V It tan θ′, (24)

where V is the horizontal speed of the drones, It is the time period between two
target detections and hSECu is the altitude calculated by the SEC algorithm (or
by any other suboptimal solution). V It is, in fact, the maximum distance that
a target can travel and it has been added to ensure that these targets will be
still covered until the next detection. Simulation results with different values of
It are presented in Section 6.2.3.

Figure 2: Altitude difference between that computed by SEC and the actual
one.

In scenarios where a drone may cover several targets, the computation of
the smallest enclosing circle may be slow. A possible delay in the computation
may cause abnormal behaviors, such as the appearance of uncovered targets
(some targets may slip out of the range of the drone due to a delay of the com-
putation of the altitude of the previous iteration). For that reason suboptimal
solutions with lower computation cost can be used (e.g. the average value of
the coordinates of the points).

Concerning the message cost, L-MDLP uses two types of messages to com-
municate with other drones. The first type is a broadcast packet containing
information about the stamp, drone position and the targets it monitors. The
second type is used to call other drones when discarded targets have to be
covered. A possible packet loss of the first message type does not affect the
monitoring of the targets since, in the worst case, it could only cause a double
covering of some of the targets. On the other hand, a packet loss of the second
message type leads to uncovered targets if the discarded target is not covered
by any other drone at that particular moment. We assess the affect of packet
loss on the number of uncovered targets in Section 6.2.1.

The communication complexity of the L-MDLP depends on the number of
active drones and their position in the space. The maximum number of messages
is sent when the number of drones is maximized; that is when each target is
covered by a single drone and no merges are made throughout the monitoring
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time. Since all the nodes send a single message at the beginning of each round,
the maximum communication complexity is nI.

L-MDLP is based on LAS algorithm [47]. However, it differs from LAS since
it is designed to minimize both the energy consumption and the number of
drones. LAS is designed to minimize the energy consumption only. Additionally,
in L-MDLP the performance is enhanced (a) by allowing a drone to discard
some targets in order to save energy (split process), and (b) by calling the least
possible number of drones in case of a split. LAS considers no splits except if
a drone exceeds the maximum altitude and every time there is a split it calls a
number of drones equal to the discarded targets (higher cost).

6 Simulation and Computational Results

The model (3) – (9), aimed at minimizing the number of used drones and the
energy consumption, and model (10) – (20) aimed at minimizing the number
of drones have been implemented in Java language and solved by CPLEX. The
dynamic model with the minimization of the energy consumption has been im-
plemented in GAMS 23.6 (www.gams.com) and solved with the BONMIN solver.
We set BONMIN to use a branch-and-bound algorithm which is a hybrid of
B-BB and B-QG and is based on solving either a continuous non-linear or a
continuous linear program at each node of the search tree, improving the linear
program by outer approximations, and branching on integer variables. Since
the higher complexity of the model, no optimal solution is found for all the
considered instances (described in the next section). For this reason, we present
only results obtained with the linear models, that is, models (3) – (9) with the
minimization of the number of drones and total energy consumption and model
(10) – (20) that minimizes the total number of used drones. The computational
results have been carried out on an Intel(R) Core(TM) i7 CPU M620, 2.67 GHz,
4 GB machine under Microsoft 7 operating system.

On the other hand, in order to conduct the simulations, we developed a
custom simulator written in Perl. The simulations have been carried out on an
Intel Core2 Duo 1.67GHz CPU under Debian/GNU Linux operating system.
The usage of RAM was minimal and no parallel processing was considered.

We consider a set of 600 scenarios by letting different values for |T |, and
number of coordinates (x, y, h), called in the sequel #c. This value indicates
the number of possible points in which each drone can be placed. In addition,
for each couple of values |T | and #c, we have generated 20 instances in which
different positions of the targets are considered. In this respect, the values of
Xti and Yti , ∀ti ∈ T , are chosen randomly in the range [0, 100]. In addition, we
imposed a time limit of 1 hour for the execution time to solve the models.

In particular, we set |T | = 10, 15, 20, 25, 30, 50, #c = 108, 363, 1323, 7803, 30603,
xmax, ymax = 100m, α = 10.5, β = 30, Pmax = 85, Rc = 50m, and hmax = 10.
Three different values for the altitude h have been considered, i.e., h = 1, 5, 10m.
In order to test the dynamic model, we have considered the static instances, de-
scribed above, in which time windows of observation have been introduced. We
set the width of the time windows to 10 for each target. It is worth observing
that the dynamic instances are equal to the static counterparts. Indeed, they
are characterized by the same number of targets placed in the same position.
To model the dynamism, we assume that target ti and ti+1 are the copies of the
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same target. In other words, |Ṫ | = |T |. A camera with wide lens of 120 degrees
was considered for all the simulation results. The selection of this value is cru-
cial for the computation cost since it is highly related to #c values. If the angle
is small, high values of #c must be selected, increasing a lot the computational
complexity of the model.

The simulation results are divided in two parts. In the first part, we compare
the simulation results to the ones obtained by solving the optimization models.
For this reason, the same limited values regarding #c, h and time window were
used. In the second part, we consider infinite values for #c and h (1 ≤ h ≤ 10).
We, also, set a time window equal to one and we allow each event to move up
to 500 times. We keep the same values for the rest of the parameters. For the
localized algorithm, we assume that the targets are detected every one round
unless a different value is specified in the text. The vertical speed of the drones
is 2m/s and their horizontal 40km/h (11.11 m/s). Moreover, regarding the
mobility of the targets, we assume a random mobility model where the targets
initially choose a direction and in each step the position is updated according
to a maximum angle and a maximum speed. The maximum angle and speed
are equal to π/4 and 1m/s, respectively. Other mobility models and target
distributions such as the Random Way Point and the Attractors have been
evaluated as well, but the random mobility model was selected as the most
generic one. For more information about the assessment of the mobility models
you can check http://uav-scheduling.gforge.inria.fr/.

Since the positions of the targets are chosen randomly during the process,
each of the 20 generated instances is executed 10 times and the average costs are
presented (i.e., 200 executions per scenario). The 95% confidence intervals are,
also, shown in the figures when relevant. The initial placement of the targets is
provided by C-SDLP in order to have a fair comparison with the computational
results. Other placement options have been, also, tested exhibiting a slightly
higher cost (number of drones or total energy) during the first iterations of the
algorithm.

6.1 Results for scenarios with limited input

In this section, we discuss the results obtained using limited values for #c, h
and time window. The results are summarized in four tables (Tables 1, 2, 3 and
4) collected on the generated scenarios when solving model (3) – (9) and (10)
– (20), respectively. Each row reports the average results over the instances.
Concerning the optimization models, we include both optimal solutions and
feasible solutions given by the solver within the imposed time limit. We report
the value of the objective function under column cost, the execution time in
seconds under column time, the number of solved scenarios to optimality under
column #opt, the number of scenario for which a feasible solution is available
under column #feas, and the number of scenario for which the solver is not able
to produce a feasible solution within the time limit is reported under column
#!feas. In SDLP, we compare the performance of the two centralized algorithms
(i.e., C-SDLP and k-means) with the solutions of the proposed optimization
models. In the dynamic model, we assess the performance of C-MDLP and
L-MDLP and we compare the related results to those obtained by solving the
optimization models.

The numerical results underline that the problem of minimizing the number
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Minimize number of drones
Computational C-SDLP k-means

|T | #c cost time #opt #feas #!feas cost time cost time
10 108 6.15 0.01 20 6.38 0.0014 6.94 0.0013
10 363 5.50 0.04 20 5.68 0.0014 5.89 0.0010
10 1323 5.00 1.82 20 5.19 0.0014 5.63 0.0010
10 7803 4.75 168.93 19 1 4.98 0.0014 5.29 0.0009
10 30603 4.75 276.74 19 1 4.92 0.0014 5.46 0.0009
15 108 8.10 0.02 20 8.63 0.0029 10.49 0.0034
15 363 6.40 0.11 20 6.87 0.0027 7.56 0.0021
15 1323 6.05 468.18 18 2 6.51 0.0027 7.01 0.0019
15 7803 5.95 347.69 18 2 6.34 0.0030 6.95 0.0019
15 30603 5.75 1190.77 13 7 6.17 0.0030 6.85 0.0018
20 108 9.70 0.04 20 10.36 0.0049 12.17 0.0057
20 363 7.60 0.26 20 8.21 0.0042 8.99 0.0035
20 1323 6.85 1183.23 12 8 7.52 0.0044 8.55 0.0033
20 7803 6.55 1138.99 12 8 7.18 0.0050 8.30 0.0032
20 30603 6.40 989.65 15 5 7.03 0.0050 8.23 0.0032
25 108 10.50 0.06 20 11.44 0.0073 14.46 0.0088
25 363 8.15 0.40 20 9.37 0.0068 10.41 0.0057
25 1323 7.45 1275.10 9 11 8.50 0.0068 9.62 0.0051
25 7803 7.20 750.27 15 5 8.02 0.0077 9.48 0.0050
25 30603 7.26 929.79 12 7 1 7.92 0.0078 9.64 0.0051
30 108 11.50 0.10 20 12.63 0.0109 18.35 0.0149
30 363 8.90 0.64 20 10.07 0.0104 12.19 0.0089
30 1323 7.90 748.04 14 6 9.04 0.0092 11.09 0.0078
30 7803 7.79 1728.95 7 12 1 8.70 0.0111 10.41 0.0072
30 30603 20 8.57 0.0112 10.27 0.0070
50 108 14.80 0.33 20 15.74 0.0308 27.06 0.0516
50 363 10.85 2.20 20 12.25 0.0300 16.59 0.0269
50 1323 9.50 2579.38 3 17 10.85 0.0273 14.77 0.0229
50 7803 9.85 2283.64 2 18 10.50 0.0346 14.28 0.0218
50 30603 20 10.46 0.0336 14.36 0.0220

Table 1: Average simulation and computational results of the Static Drone
Location Problem while minimizing the number of drones

of drones is easier than that for which the total energy consumption is minimized
(see Tables 1 and 2). Indeed, the solver is able to solve to optimality 448 and 265
instances when the number of drones and the energy consumption is minimized,
respectively. In addition, the computational cost for solving the latter is 3.22
times higher than that required for the former.

Comparing the computational results collected with static and dynamic
models, an interesting behavior can be observed.

First, the number of scenarios solved to optimality under the dynamic setting
is equal to that obtained with the static counterpart. However, the number of
dynamic scenarios for which the solver is not able to produce a feasible solution
within the time limit is equal to 43, whilst the solver fails to provide a feasible
solution for 42 scenarios in the case of static problem. The execution time
for solving the static problem is close to the time required by the dynamic
counterpart. Indeed, the latter is 1.06 slower than the former. One expects that
the dynamic problem should be harder than the static one. The obtained results
can be justified by considering that the introduction of constraints (14) and (16)
reduces the feasible region and this reduction suffices the higher complexity due
to the introduction of variables τustart and τuend. It follows that the search process
for the dynamic model is similar to the static one.

Secondly, the average optimal solution value of the dynamic model is very
close to the static model. This is an expected trend since the number of targets
is the same for the two groups of instances (i.e., static and dynamic).

Third, Tables 1, 2 and 3, 4 show that the higher the #c, the more difficult is
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Minimize energy consumption
Computational C-SDLP k-means

|T | #c cost time #opt #feas #!feas cost time cost time
10 108 408163.25 0.01 20 420389.94 0.0027 466583.75 0.0039
10 363 342663.63 0.04 20 349754.47 0.0028 358986.36 0.0039
10 1323 308903.13 778.51 17 3 317337.25 0.0032 331133.78 0.0039
10 7803 225869.63 2489.37 4 16 239773.62 0.0049 236771.54 0.0039
10 30603 222269.63 2380.48 4 16 237339.38 0.0058 234665.76 0.0039
15 108 551034.38 0.03 20 574215 0.0058 683436.5 0.0092
15 363 434031.13 0.11 20 456261.96 0.0056 488489.15 0.0093
15 1323 386643.13 3600.00 20 406207.64 0.006 434307.9 0.0093
15 7803 321978.13 3600.00 20 365137.5 0.0131 352390.89 0.0093
15 30603 320812.38 3600.00 20 363920.38 0.0149 348375.96 0.0093
20 108 661018.38 0.05 20 701237.3 0.0095 815119.46 0.0179
20 363 519321.88 0.24 20 550501.15 0.0088 588265.79 0.0179
20 1323 459342.75 3600.00 20 490021.91 0.0105 532438.34 0.0179
20 7803 396529.13 3600.00 20 479547.25 0.0263 450994.44 0.0179
20 30603 399477.13 3600.00 20 475895.88 0.0293 451354.86 0.0179
25 108 741226.25 0.07 20 794224.8 0.0138 984533.62 0.0309
25 363 570233.75 0.41 20 634826.7 0.0139 687425.55 0.031
25 1323 502806.63 3600.00 20 552667.79 0.0163 611811.41 0.0309
25 7803 445169.75 3600.00 20 596391.25 0.0595 544682.04 0.0377
25 30603 476735.13 3600.00 20 586654.25 0.0534 538131.75 0.0309
30 108 812288.88 0.12 20 870964.15 0.0239 1248198.65 0.0554
30 363 635271.00 0.65 20 699507.12 0.0215 795181.18 0.0485
30 1323 551121.25 3600.00 20 610349.51 0.0233 704477.54 0.0486
30 7803 512708.50 3600.00 20 712018.12 0.0817 631194.86 0.0486
30 30603 20 701064 0.1005 624116.06 0.0565
50 108 1054730.25 0.41 20 1111059.31 0.0585 1854050.86 0.1876
50 363 807480.63 2.42 20 891676.15 0.064 1135196.64 0.1883
50 1323 694617.75 3600.00 20 780524.03 0.0738 994622.82 0.2103
50 7803 741191.05 2817.36 19 1 1117320.75 0.4037 924309.16 0.1986
50 30603 20 1084701.8 0.397 916712.18 0.1969

Table 2: Average simulation and computational results of the Static Drone
Location Problem while minimizing the energy consumption

the scenario. This behavior is justified by considering the number of variables
of the model. Indeed, the higher the #c, the higher the number of possible
positions that each machine can occupy. Of course, the lower the #c, the smaller
the feasible region. This aspect justifies the value of the objective function.
Indeed, the higher the #c, the better the optimal solution value. This behavior
can be observed for both cases, i.e., minimization of number of drones and
energy consumption, respectively.

The simulation results of Tables 1 and 2 show that the performance of C-
SDLP and k-means is very close to the best solution provided by solving the
optimization model. C-SDLP presents better results than k-means specially
in the case where many targets are deployed. On the other hand, k-means is
faster for the majority of the scenarios. Even if the optimization model and the
simulations were executed on different machines, we can observe that the two
heuristics present an almost linear trend in the execution time compared to the
computational cost required by solving the optimization model. Apparently,
due to their lower complexity, the heuristics are able to solve all the instances
in very small amount of time.

Concerning the dynamic model, the results presented in Tables 3 and 4 show
that the localized solution performs up to 20% worse than the centralized one
(except when #c = 7803). However, L-MDLP’s performance is quite acceptable
since in L-MDLP (a) the decision of merges and splits is done locally and no
global optimization is performed, and (b) the altitude of the drones is computed
using the average coordinates of the targets which results to a higher energy
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Minimize number of drones
Computational C-MDLP L-MDLP

|T | #c cost time #opt #feas #!feas cost time cost time
10 108 6.15 0.01 20 6.45 0.0337 7.23
10 363 5.50 0.04 20 5.61 0.0307 6.44
10 1323 5.00 1.82 20 5.24 0.0324 6.2
10 7803 4.75 171.33 19 1 4.96 0.0302 5.88
10 30603 4.75 272.24 19 1 5 0.034 5.77
15 108 8.10 0.02 20 8.31 0.0594 9.54
15 363 6.40 0.11 20 6.81 0.0515 8.19
15 1323 6.05 467.51 18 2 6.4 0.0545 7.74
15 7803 5.95 350.98 18 2 6.19 0.0557 7.28
15 30603 5.75 1202.55 13 7 6.19 0.06 7.27
20 108 9.70 0.04 20 9.86 0.0882 11.51
20 363 7.60 0.23 20 8.12 0.079 9.91
20 1323 6.85 1308.07 12 8 7.4 0.0815 9.32
20 7803 6.55 1216.64 12 8 7.11 0.0846 8.95
20 30603 6.40 1029.03 15 5 7.15 0.0908 8.73
25 108 10.50 0.06 20 10.98 0.1327 13.18
25 363 8.15 0.40 20 8.94 0.1099 11.05
25 1323 7.45 1781.31 9 11 8.19 0.1142 10.48
25 7803 7.20 811.19 15 5 7.9 0.1186 10.01
25 30603 7.42 984.59 11 8 7.8 0.1268 9.82
30 108 11.50 0.10 20 12.2 0.1689 14.99
30 363 8.90 0.63 20 9.6 0.1457 12.36
30 1323 7.90 936.91 14 6 8.83 0.15 11.58
30 7803 7.80 1885.74 8 12 8.44 0.1591 11.01
30 30603 20 8.39 0.1667 10.85
50 108 14.84 0.32 20 15.55 0.1234 20.21
50 363 10.85 2.19 20 12.08 0.1125 16.33
50 1323 9.50 2735.57 3 17 10.93 0.1124 15.17
50 7803 9.67 2006.19 2 16 2 10.34 0.1224 14.24
50 30603 20 10.28 0.1271 14.13

Table 3: Average simulation and computational results of the Mobile (Dynamic)
Drone Location Problem while minimizing the number of drones

consumption.
Figures 3 and 4 depict a representative example of the positions of the drones

as they have been computed by the three solutions when the number of drones
and the energy consumption is minimized, respectively. An instance of the static
problem with 15 targets and grid tics of 5 meters (#c = 1323) were used. The
best solution is provided by the computational model with 6 drones / 293,775
Joules, while C-SDLP and k-means follow with 7 drones / 293,775 Joules and
7 drones / 453,455 Joules, respectively.

6.2 Results for scenarios with unlimited input

In this section, we assess the centralized and localized algorithms in more com-
plex scenarios without restrictions in the number of available altitudes, posi-
tions, time windows and number of rounds. We compare their performance to
that of “Single” deployment. We call “Single” the deployment where each target
is covered by a single drone and it denotes the worst case deployment in terms
of cost1.

Figures 5 and 6 confirm the behavior we observed in the previous section,
showing that C-SDLP performs slightly better than k-means, when the number
of drones or the energy is minimized, respectively. Both algorithms are far away

1When the objective is the minimization of the number of drones, the worst case deploy-
ment is upper bounded by the number of drones needed to cover the whole terrain area. In
our case, where a 100x100 meters terrain is used, this number is equal to 25.
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Minimize energy consumption
Computational C-MDLP L-MDLP

|T | #c cost time #opt #feas #!feas cost time cost time
10 108 17783.89 0.0349 21608.48
10 363 15852.54 0.0533 16428.49
10 1323 14280.53 0.0534 15918.1
10 7803 8572.9 0.0743 17087.2
10 30603 8434.76 0.0868 9234.9
15 108 23576.08 0.0641 29001.82
15 363 22189.69 0.1131 23378.44
15 1323 19426.44 0.1029 21522.75
15 7803 12812.73 0.1982 23954.75
15 30603 12602.04 0.2073 13950.1
20 108 28456.35 0.0958 36757.47
20 363 27296.52 0.194 28441.26
20 1323 23970.31 0.1664 26136.9
20 7803 17019.99 0.3841 29462.55
20 30603 16705 0.4299 18654.8
25 108 32133.69 0.1312 43436.46
25 363 31261.31 0.2483 33120.73
25 1323 27375.86 0.2555 30144.36
25 7803 21139.42 0.6948 33716.49
25 30603 20695.96 0.7239 22632.7
30 108 35813.51 0.1784 50381.56
30 363 36033.97 0.3873 37929.85
30 1323 30992.6 0.3381 34536.03
30 7803 25288.86 1.0501 39223.2
30 30603 24721.37 1.121 26804.91
50 108 47263.94 0.1336 74204.65
50 363 51256.95 0.3201 54379.24
50 1323 41672.91 0.23 48295.74
50 7803 41680.63 1.4265 55234.27
50 30603 40224.37 1.4017 40613.72

Table 4: Average simulation and computational results of the Mobile (Dynamic)
Drone Location Problem while minimizing the energy consumption

from the worst case scenario of “Single” deployment when the objective is the
minimization of the drones. When the objective changes, the gap is smaller
since for many scenarios the best solution coincides with the worst case.

The rest of the results are related to the mobile (dynamic) drone location
problem. The centralized and localized solutions are compared to LAS algorithm
[47] and to “Single”. Figure 7 depicts the performance of the four approaches,
when the number of drones is minimized. As it was expected the centralized
algorithm presents the best performance, however, L-MDLP is very close to the
centralized one while it outperforms LAS. When the objective is to minimize
the energy consumption (see Figure 8), all the approaches perform very close to
“Single” for low target populations since a few only merges can happen. The
gap is bigger as the number of targets increases.

6.2.1 Presence of communication errors

L-MDLP’s tolerance in communication errors is assessed in the next set of sim-
ulations (see Figures 9 and 10). We assume that there is a 50% probability of
loosing a message when it is transmitted to a neighboring drone or a command
center, while we measure the percentage of uncovered targets. When a message
is lost, one or more targets may be left uncovered as it has been explained in Sec-
tion 5.2. Despite the huge loss probability, the percentage of uncovered targets
throughout the monitoring time is low and ranges from 11 to 22%. The number
of uncovered targets is slightly higher when the objective is the minimization
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Figure 3: The positions of the drones computed by the three solutions when 15
targets are deployed, #c = 1323, and the number of drones is minimized.

of the drones and few targets are placed in the terrain. This happens because
less drones are deployed in the field and each drone monitors on average many
targets. In this case, the maximum possible altitude is reached more easily
and considering that a new drone may not arrive to cover the discarded tar-
gets, the appearance of uncovered targets is more probable. On the other hand,
when many targets are placed, an uncovered target will be most likely covered
by a neighboring drone due to the higher drone density. When we minimize
the energy consumption we have about the same amount of uncovered targets
since more drones are deployed (higher density) but they stay at lower heights
(smaller area covered). It means that less splits can happen (thus less uncovered
targets), but the targets will probably stay uncovered by longer period of time
due to the lower height of the drones.

6.2.2 Responsiveness

The responsiveness of the new drones to splits is presented in Figures 11 and
12. As explained in Section 5.2, we assume that in case of a split, new drones
arrive from a near command station to cover the discarded targets. The time
needed to cover these targets is called “responsiveness” and it depends on the
position of the targets. We can observe that responsiveness ranges between 3.25
and 3.7 seconds and it, actually, means that no target can slip out of the range
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Figure 4: The positions of the drones computed by the three solutions when 15
targets are deployed, #c = 1323, and the energy consumption is minimized.
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Figure 5: Minimization of the number of drones for the static drone location
model.

of a new drone within this low period of time.

6.2.3 Detection frequency

In the final set of simulations, we vary the detection frequency (i.e., the time
elapsed between two successive target detections) and we measure the number

23



 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 10  15  20  25  30  35  40  45  50En
er

gy
 c

on
su

m
ed

 (x
10

00
 J)

Number of targets

C-SDLP
k-means

Single

Figure 6: Minimization of the energy consumed for the static drone location
model.
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Figure 7: Minimization of the number of drones for the dynamic drone location
model.
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Figure 8: Minimization of the energy consumed for the dynamic drone location
model.

of drones and the total energy consumption. According to Formula (24), the
final altitude of a drone depends on the detection frequency, which practically
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Figure 9: Percentage of uncovered targets when the number of drones is mini-
mized and communication errors occur.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10  15  20  25  30  35  40  45  50

%
 o

f u
nc

ov
er

ed
 ta

rg
et

s

Number of targets

L-MDLP with errors

Figure 10: Percentage of uncovered targets when the energy consumption is
minimized and communication errors occur.
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Figure 11: Responsiveness when the number of drones is minimized.

means that the drone should fly higher in order to still be able to detect the
mobile targets when they move. Here, we compare L-MDLP against a static
deployment where a minimum number of drones is used to monitor the whole
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Figure 12: Responsiveness when the total energy consumption is minimized.

area. Four detection frequencies are examined (i.e., 1, 2, 5, and 10 rounds).
The results are presented in Figures 13 and 14 and show that for high detection
frequencies (e.g. 10 secs) and many targets, the number of drones and the total
energy consumption are slightly higher than covering the whole area with static
nodes.

 5
 10
 15
 20
 25
 30
 35

 10  15  20  25  30  35  40  45  50

Nu
m

be
r o

f d
ro

ne
s

Number of targets
L-MDLP 1s
L-MDLP 2s
L-MDLP 5s

L-MDLP 10s
Static

Figure 13: Number of drones used for different detection frequencies.

7 Conclusion and Future work

In this paper we dealt with the cost minimization problem related to the optimal
placement of drones in order to cover a set of static or mobile targets. We distin-
guished two minimization problems; the minimization of the number of drones
and the minimization of the total energy consumption (related to drone posi-
tion). We formulated the problems above and we provided mathematical models
to compute the optimal solutions. Due to the high complexity of the models,
we also proposed efficient heuristics as well as a practical localized solution in
which each drone cooperates with other machines in its vicinity to minimize the
coverage cost. The evaluation of the proposed centralized heuristics and local-
ized solutions using simulations and solving the mathematical models showed
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Figure 14: Total energy consumption for different detection frequencies.

that the centralized algorithms perform similar to the optimal solutions while
the localized approach is 10-20% close to the optimal solution.

The next step of this work will focus on the detection quality. We will add
another dimension and constraint to our problem by defining a threshold quality
at which each target should be observed. This detection quality will be linked
to the altitude of the drone and the number of drones observing a target. We
will, also, introduce a mobility pattern for each target that could be learned by
the drones in order to anticipate the movements of the targets and to increase
the efficiency of tracking. In a long term view, the work in this paper could also
include heterogeneous devices like static sensors, cars or user mobile phones.
The drone tracking system will then take advantage of these device to optimize
their observations.
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